Vibration Analysis of Shape Memory Alloy Enhanced Multi-Layered Composite Beams with Asymmetric Material Behavior.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-06 DOI:10.3390/ma18051181
Kosar Samadi-Aghdam, Pouya Fahimi, Hamid Shahsavari, Davood Rahmatabadi, Mostafa Baghani
{"title":"Vibration Analysis of Shape Memory Alloy Enhanced Multi-Layered Composite Beams with Asymmetric Material Behavior.","authors":"Kosar Samadi-Aghdam, Pouya Fahimi, Hamid Shahsavari, Davood Rahmatabadi, Mostafa Baghani","doi":"10.3390/ma18051181","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops a finite element solution to analyze the vibration response of multi-layer shape memory alloy (SMA) composite beams. Using Euler-Bernoulli beam motion equations with tension-compression asymmetry, based on Poorasadion's model, the Newmark method and Newton-Raphson technique are employed. Validating the model against ABAQUS/Standard results for a homogeneous SMA beam shows good agreement. This research explores the dynamic characteristics of bi-layer and tri-layer SMA beams, presenting deflection-time, stress-strain, and velocity-deflection profiles. SMAs' hysteresis property effectively reduces early-stage vibration amplitudes, and their energy-dissipating feature during phase transformations makes them promising for controlling dynamic performance in engineering applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051181","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a finite element solution to analyze the vibration response of multi-layer shape memory alloy (SMA) composite beams. Using Euler-Bernoulli beam motion equations with tension-compression asymmetry, based on Poorasadion's model, the Newmark method and Newton-Raphson technique are employed. Validating the model against ABAQUS/Standard results for a homogeneous SMA beam shows good agreement. This research explores the dynamic characteristics of bi-layer and tri-layer SMA beams, presenting deflection-time, stress-strain, and velocity-deflection profiles. SMAs' hysteresis property effectively reduces early-stage vibration amplitudes, and their energy-dissipating feature during phase transformations makes them promising for controlling dynamic performance in engineering applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信