Joo Hwa Lee, Jinsick Kim, Yu Chang Jo, Yun Hoo Jo, Yeong Hwan Jeong, Soo Ah Jeong, Beong Ou Lim, Dong Wook Shin
{"title":"Enhanced Antioxidant and Protective Effects of Fermented <i>Solanum melongena</i> L. Peel Extracts Against Ultraviolet B-Induced Skin Damage.","authors":"Joo Hwa Lee, Jinsick Kim, Yu Chang Jo, Yun Hoo Jo, Yeong Hwan Jeong, Soo Ah Jeong, Beong Ou Lim, Dong Wook Shin","doi":"10.3390/nu17050847","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The skin, being the body's outermost organ, plays a vital role in protecting against various external stimuli. Ultraviolet generates reactive oxygen species (ROS), promoting the secretion of matrix metalloproteinases (MMPs) and inducing collagen degradation. Many studies have been conducted to identify natural substances that can prevent or delay the harmful effects of UV. <b>Methods</b>: A wound healing assay, DCF-DA reactive oxygen species (ROS) assay, and JC-1 assay were performed to assess the effects of bio-converted eggplant peels (BEPs) on human dermal fibroblasts (HDFs). Western blot analysis was also conducted to understand the underlying mechanisms for their effects. Finally, hematoxylin-eosin staining and immunohistochemistry were also performed in animal studies. <b>Results</b>: Our study evaluated the antioxidant efficacy of BEPs fermented with <i>Lactobacillus plantarum</i> in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-HDFs and UVB-induced skin damage in hairless mice. We demonstrated that BEPs exhibited enhanced antioxidant properties compared to non-fermented eggplant peels (EPs). BEPs facilitated wound healing in H<sub>2</sub>O<sub>2</sub>-damaged HDFs, reduced ROS levels, and restored mitochondrial membrane potential. BEPs suppressed the phosphorylation of ERK, p38, and JNK as their underlying mechanism. We further demonstrated that dietary supplementation of BEPs also downregulated matrix metalloproteinase 1 (MMP1) expression and upregulated collagen I (COL1) in UVB-damaged hairless mice, indicating that BEPs were more effective compared to EPs. <b>Conclusions</b>: Our studies suggest that BEPs fermented with <i>Lactobacillus plantarum</i> hold significant potential as a protective agent for mitigating UVB-induced damage and promoting skin health.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"17 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu17050847","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The skin, being the body's outermost organ, plays a vital role in protecting against various external stimuli. Ultraviolet generates reactive oxygen species (ROS), promoting the secretion of matrix metalloproteinases (MMPs) and inducing collagen degradation. Many studies have been conducted to identify natural substances that can prevent or delay the harmful effects of UV. Methods: A wound healing assay, DCF-DA reactive oxygen species (ROS) assay, and JC-1 assay were performed to assess the effects of bio-converted eggplant peels (BEPs) on human dermal fibroblasts (HDFs). Western blot analysis was also conducted to understand the underlying mechanisms for their effects. Finally, hematoxylin-eosin staining and immunohistochemistry were also performed in animal studies. Results: Our study evaluated the antioxidant efficacy of BEPs fermented with Lactobacillus plantarum in hydrogen peroxide (H2O2)-HDFs and UVB-induced skin damage in hairless mice. We demonstrated that BEPs exhibited enhanced antioxidant properties compared to non-fermented eggplant peels (EPs). BEPs facilitated wound healing in H2O2-damaged HDFs, reduced ROS levels, and restored mitochondrial membrane potential. BEPs suppressed the phosphorylation of ERK, p38, and JNK as their underlying mechanism. We further demonstrated that dietary supplementation of BEPs also downregulated matrix metalloproteinase 1 (MMP1) expression and upregulated collagen I (COL1) in UVB-damaged hairless mice, indicating that BEPs were more effective compared to EPs. Conclusions: Our studies suggest that BEPs fermented with Lactobacillus plantarum hold significant potential as a protective agent for mitigating UVB-induced damage and promoting skin health.
期刊介绍:
Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.