Preparation of CL-20 with Controllable Particle Size Using Microfluidic Technology.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zihao Zhang, Jin Yu, Yujia Wen, Hanyu Jiang, Siyu Xu, Yubao Shao, Ergang Yao, Heng Li, Fengqi Zhao
{"title":"Preparation of CL-20 with Controllable Particle Size Using Microfluidic Technology.","authors":"Zihao Zhang, Jin Yu, Yujia Wen, Hanyu Jiang, Siyu Xu, Yubao Shao, Ergang Yao, Heng Li, Fengqi Zhao","doi":"10.3390/molecules30051176","DOIUrl":null,"url":null,"abstract":"<p><p>As a typical high-energy-density material, the sensitivity of CL-20 severely limits its application in explosives and propellants. Adjusting its structure at the microscopic level can effectively solve such problems. In this study, a microfluidic recrystallization technique was used to prepare ε-CL-20 with three different particle sizes, with narrow particle size distributions (D<sub>50</sub> = 2.77 μm, 17.22 μm and 50.35 μm). The prepared samples had fewer surface defects compared to the raw material. As the particle size decreased, the density of CL-20 increased and its impact sensitivity was significantly reduced. The activation energy of the CL-20 prepared using microfluidic technology increased with increases in particle size. Laser ignition experiments revealed that smaller CL-20 particles had the highest energy release efficiency, while larger particles exhibited a higher energy density and more stable energy release. The combustion performance and safety of CL-20 can be effectively improved by improving the crystal size distribution and surface morphology. Controllable preparation of multiple particle sizes of CL-20 was achieved using microfluidic recrystallization technology, which provides a reference for the preparation of multiple particle sizes of other energetic materials.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30051176","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a typical high-energy-density material, the sensitivity of CL-20 severely limits its application in explosives and propellants. Adjusting its structure at the microscopic level can effectively solve such problems. In this study, a microfluidic recrystallization technique was used to prepare ε-CL-20 with three different particle sizes, with narrow particle size distributions (D50 = 2.77 μm, 17.22 μm and 50.35 μm). The prepared samples had fewer surface defects compared to the raw material. As the particle size decreased, the density of CL-20 increased and its impact sensitivity was significantly reduced. The activation energy of the CL-20 prepared using microfluidic technology increased with increases in particle size. Laser ignition experiments revealed that smaller CL-20 particles had the highest energy release efficiency, while larger particles exhibited a higher energy density and more stable energy release. The combustion performance and safety of CL-20 can be effectively improved by improving the crystal size distribution and surface morphology. Controllable preparation of multiple particle sizes of CL-20 was achieved using microfluidic recrystallization technology, which provides a reference for the preparation of multiple particle sizes of other energetic materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信