Microstructure-Based Magneto-Mechanical Modeling of Magnetorheological Elastomer Composites: A Comparable Analysis of Dipole and Maxwell Methods.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-06 DOI:10.3390/ma18051187
Shengwei Feng, Lizhi Sun
{"title":"Microstructure-Based Magneto-Mechanical Modeling of Magnetorheological Elastomer Composites: A Comparable Analysis of Dipole and Maxwell Methods.","authors":"Shengwei Feng, Lizhi Sun","doi":"10.3390/ma18051187","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetorheological elastomers (MREs) are smart composite materials with tunable mechanical properties by ferromagnetic particle interactions. This study applied the microstructure-based dipole and Maxwell methods to evaluate the magneto-mechanical coupling and magnetostrictive responses of MREs, focusing on various particle distributions. The finite element modeling of representative volume elements with fixed volume fractions revealed that the straight chain microstructure exhibits the most significant magnetostrictive effect due to its low initial shear stiffness and significant magnetic force contributions. For particle separations exceeding three radii, the dipole and Maxwell methods yield consistent results for vertically or horizontally aligned particles. For particle separations greater than three radii, the dipole and Maxwell methods produce consistent results for vertically and horizontally aligned particles. However, discrepancies emerge for angled configurations and complex microstructures, with the largest deviation observed in the hexagonal particle distribution, where the two methods differ by approximately 27%. These findings highlight the importance of selecting appropriate modeling methods for optimizing MRE performance. Since anisotropic MREs with straight-chain alignments are the most widely used, our results confirm that the dipole method offers an efficient alternative to the Maxwell method for simulating these structures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051187","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetorheological elastomers (MREs) are smart composite materials with tunable mechanical properties by ferromagnetic particle interactions. This study applied the microstructure-based dipole and Maxwell methods to evaluate the magneto-mechanical coupling and magnetostrictive responses of MREs, focusing on various particle distributions. The finite element modeling of representative volume elements with fixed volume fractions revealed that the straight chain microstructure exhibits the most significant magnetostrictive effect due to its low initial shear stiffness and significant magnetic force contributions. For particle separations exceeding three radii, the dipole and Maxwell methods yield consistent results for vertically or horizontally aligned particles. For particle separations greater than three radii, the dipole and Maxwell methods produce consistent results for vertically and horizontally aligned particles. However, discrepancies emerge for angled configurations and complex microstructures, with the largest deviation observed in the hexagonal particle distribution, where the two methods differ by approximately 27%. These findings highlight the importance of selecting appropriate modeling methods for optimizing MRE performance. Since anisotropic MREs with straight-chain alignments are the most widely used, our results confirm that the dipole method offers an efficient alternative to the Maxwell method for simulating these structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信