High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method.
Laura Caggiu, Costantino Cau, Marzia Mureddu, Stefano Enzo, Fabrizio Murgia, Lorena Pardo, Sonia Lopez-Esteban, Jose F Bartolomé, Gabriele Mulas, Roberto Orrù, Sebastiano Garroni
{"title":"High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba<sub>0.85</sub>Ca<sub>0.15</sub>)(Zr<sub>0.10</sub>Ti<sub>0.90</sub>)O<sub>3</sub> Synthesized Using an EDTA/glycerol Modified Pechini Method.","authors":"Laura Caggiu, Costantino Cau, Marzia Mureddu, Stefano Enzo, Fabrizio Murgia, Lorena Pardo, Sonia Lopez-Esteban, Jose F Bartolomé, Gabriele Mulas, Roberto Orrù, Sebastiano Garroni","doi":"10.3390/ma18051180","DOIUrl":null,"url":null,"abstract":"<p><p>A single (Ba<sub>0.85</sub>Ca<sub>0.15</sub>)(Zr<sub>0.10</sub>Ti<sub>0.90</sub>)O<sub>3</sub> phase material with a tetragonal structure is processed and synthesized with a modified Pechini method using ethylenediaminetetraacetic acid and glycerol as chelating and esterifying agents, respectively. The complete chemical transformation to the desired phase is achieved at 900 °C, which is 300 °C lower than conventional synthesis methods. Its consolidation, reaching up to 91% relative density, is carried out at 1400 °C. It is clearly demonstrated that the use of ethylenediaminetetraacetic acid and glycerol reagents is particularly beneficial for inducing a homogeneous grain size distribution (10 μm), which leads to very promising electromechanical properties (d<sub>33</sub> = 451 pC/N; d<sub>31</sub> = 160 pC/N; kp = 0.40; ε'33T = 4790 and Q<sub>m</sub> = 358) of the densified system.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051180","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A single (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 phase material with a tetragonal structure is processed and synthesized with a modified Pechini method using ethylenediaminetetraacetic acid and glycerol as chelating and esterifying agents, respectively. The complete chemical transformation to the desired phase is achieved at 900 °C, which is 300 °C lower than conventional synthesis methods. Its consolidation, reaching up to 91% relative density, is carried out at 1400 °C. It is clearly demonstrated that the use of ethylenediaminetetraacetic acid and glycerol reagents is particularly beneficial for inducing a homogeneous grain size distribution (10 μm), which leads to very promising electromechanical properties (d33 = 451 pC/N; d31 = 160 pC/N; kp = 0.40; ε'33T = 4790 and Qm = 358) of the densified system.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.