Highly Branched Poly(Adipic Anhydride-Co-Mannitol Adipate): Synthesis, Characterization, and Thermal Properties.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-04 DOI:10.3390/polym17050684
Mahir A Jalal, Einas A Abood, Zainab J Sweah, Hadi S Al-Lami, Alyaa Abdulhasan Abdulkarem, Haider Abdulelah
{"title":"Highly Branched Poly(Adipic Anhydride-<i>Co</i>-Mannitol Adipate): Synthesis, Characterization, and Thermal Properties.","authors":"Mahir A Jalal, Einas A Abood, Zainab J Sweah, Hadi S Al-Lami, Alyaa Abdulhasan Abdulkarem, Haider Abdulelah","doi":"10.3390/polym17050684","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, modification of poly(adipic anhydride) through branching its chains was carried out via melt condensation polymerization with D-mannitol. The percentage of mannitol was varied (3, 4, 5, 10, 15, and 20 Wt.%) and the resulting copolymers were purified and characterized by FT-IR and <sup>13</sup>C-NMR. These analyses indicated that linear chains of poly(adipic anhydride) can react with strong nucleophiles and dissociate to produce highly branched poly(adipic anhydride-<i>co</i>-mannitol adipate) which confirms the validity of the proposed mechanism. The copolymer's molecular weight characteristics have been also examined using GPC analysis. Thermal properties of copolymers were also investigated using TGA, DTG, and DCS analyses. TGA/DTG revealed that the thermal degradation of copolymers proceeds in multi-stage decomposition, whereas the shift and pattern change of the melting point peak of DSC curves can identify the weight percentage of mannitol for homogenous copolymers. Two non-isothermal models, the Flynn-Wall-Ozawa and Kissinger methods, have been also employed to analyze thermogravimetric data collected from the thermal decomposition of the copolymers and found that Flynn-Wall-Ozawa method provides better results with R<sup>2</sup> correlation up to 99.3%. The activation energy in the region of <i>T<sub>max</sub></i> was determined and found that an increase in mannitol contents in copolymer has a positive impact on its thermal stability.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050684","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, modification of poly(adipic anhydride) through branching its chains was carried out via melt condensation polymerization with D-mannitol. The percentage of mannitol was varied (3, 4, 5, 10, 15, and 20 Wt.%) and the resulting copolymers were purified and characterized by FT-IR and 13C-NMR. These analyses indicated that linear chains of poly(adipic anhydride) can react with strong nucleophiles and dissociate to produce highly branched poly(adipic anhydride-co-mannitol adipate) which confirms the validity of the proposed mechanism. The copolymer's molecular weight characteristics have been also examined using GPC analysis. Thermal properties of copolymers were also investigated using TGA, DTG, and DCS analyses. TGA/DTG revealed that the thermal degradation of copolymers proceeds in multi-stage decomposition, whereas the shift and pattern change of the melting point peak of DSC curves can identify the weight percentage of mannitol for homogenous copolymers. Two non-isothermal models, the Flynn-Wall-Ozawa and Kissinger methods, have been also employed to analyze thermogravimetric data collected from the thermal decomposition of the copolymers and found that Flynn-Wall-Ozawa method provides better results with R2 correlation up to 99.3%. The activation energy in the region of Tmax was determined and found that an increase in mannitol contents in copolymer has a positive impact on its thermal stability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信