Deep-Neural-Networks-Based Data-Driven Methods for Characterizing the Mechanical Behavior of Hydroxyl-Terminated Polyether Propellants.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-28 DOI:10.3390/polym17050660
Ruohan Han, Xiaolong Fu, Bei Qu, La Shi, Yuhang Liu
{"title":"Deep-Neural-Networks-Based Data-Driven Methods for Characterizing the Mechanical Behavior of Hydroxyl-Terminated Polyether Propellants.","authors":"Ruohan Han, Xiaolong Fu, Bei Qu, La Shi, Yuhang Liu","doi":"10.3390/polym17050660","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxyl-terminated polyether (HTPE) propellants are attractive in the weapons materials and equipment industry for their insensitive properties. Storage, combustion, and explosion of solid propellants are affected by their mechanical properties, so accurate mechanical modeling is vital. In this study, deep neural networks are applied to model composite solid-propellant mechanical behavior for the first time. A data-driven framework incorporating a novel training-testing splitting strategy is proposed. By building Neural Networks (FFNNs), Kolmogorov-Arnold Networks (KANs) and Long Short-Term Memory (LSTM) networks and optimizing the model framework and parameters using a Bayesian optimization algorithm, the results show that the LSTM model predicts the stress-strain curve of HTPE propellant with an RMSE of 0.053 MPa, which is 62.7% and 48.5% higher than the FFNNs and the KANs, respectively. The R<sup>2</sup> values of the LSTM model for the testing set exceed 0.99, which can effectively capture the effects of tensile rate and temperature changes on tensile strength, and accurately predict the yield point and the slope change of the stress-strain curve. Using the interpretable Shapley Additive Explanations (SHAP) method, fine-grained ammonium perchlorate (AP) can increase its tensile strength, and plasticizers can increase their elongation at break; this method provides an effective approach for HTPE propellant formulation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxyl-terminated polyether (HTPE) propellants are attractive in the weapons materials and equipment industry for their insensitive properties. Storage, combustion, and explosion of solid propellants are affected by their mechanical properties, so accurate mechanical modeling is vital. In this study, deep neural networks are applied to model composite solid-propellant mechanical behavior for the first time. A data-driven framework incorporating a novel training-testing splitting strategy is proposed. By building Neural Networks (FFNNs), Kolmogorov-Arnold Networks (KANs) and Long Short-Term Memory (LSTM) networks and optimizing the model framework and parameters using a Bayesian optimization algorithm, the results show that the LSTM model predicts the stress-strain curve of HTPE propellant with an RMSE of 0.053 MPa, which is 62.7% and 48.5% higher than the FFNNs and the KANs, respectively. The R2 values of the LSTM model for the testing set exceed 0.99, which can effectively capture the effects of tensile rate and temperature changes on tensile strength, and accurately predict the yield point and the slope change of the stress-strain curve. Using the interpretable Shapley Additive Explanations (SHAP) method, fine-grained ammonium perchlorate (AP) can increase its tensile strength, and plasticizers can increase their elongation at break; this method provides an effective approach for HTPE propellant formulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信