Bayesian Updating of Fatigue Crack Growth Parameters for Failure Prognosis of Miter Gates.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-06 DOI:10.3390/ma18051172
Anita Brown, Brian Eick, Travis Fillmore, Hai Nguyen
{"title":"Bayesian Updating of Fatigue Crack Growth Parameters for Failure Prognosis of Miter Gates.","authors":"Anita Brown, Brian Eick, Travis Fillmore, Hai Nguyen","doi":"10.3390/ma18051172","DOIUrl":null,"url":null,"abstract":"<p><p>Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often experience fatigue cracking due to their loading and welded connections. Repairing every crack can lead to excessive miter gate downtime and serious economic impacts. However, if the rate of crack growth is shown to be sufficiently slow, e.g., using Paris' law, immediate repairs may be deemed unnecessary, and this downtime can be avoided. Paris' law is often obtained from laboratory testing with detailed crack measurements of specimens with relatively simple geometry. However, Paris' law parameters for an in situ structure will likely deviate from those predicted from physical testing due to variations in loading and materials and a far more complicated geometry. To improve Paris' law parameter prediction, this research proposes a framework that utilizes (1) convenient vision-based tracking of crack evolution both in the laboratory and the field and (2) numerical model estimation of stress intensity factors (SIFs). This study's methodology provides an efficient tool for Paris' law parameter prediction that can be updated as more data become available through vision-based monitoring and provide actionable information about the criticality of existing cracks.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often experience fatigue cracking due to their loading and welded connections. Repairing every crack can lead to excessive miter gate downtime and serious economic impacts. However, if the rate of crack growth is shown to be sufficiently slow, e.g., using Paris' law, immediate repairs may be deemed unnecessary, and this downtime can be avoided. Paris' law is often obtained from laboratory testing with detailed crack measurements of specimens with relatively simple geometry. However, Paris' law parameters for an in situ structure will likely deviate from those predicted from physical testing due to variations in loading and materials and a far more complicated geometry. To improve Paris' law parameter prediction, this research proposes a framework that utilizes (1) convenient vision-based tracking of crack evolution both in the laboratory and the field and (2) numerical model estimation of stress intensity factors (SIFs). This study's methodology provides an efficient tool for Paris' law parameter prediction that can be updated as more data become available through vision-based monitoring and provide actionable information about the criticality of existing cracks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信