Metabolic expression profiling analysis reveals pyruvate-mediated EPHB2 upregulation promotes lymphatic metastasis in head and neck squamous cell carcinomas.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jingjing Miao, Boyu Chen, Lu Zhang, Zhongming Lu, Rui Wang, Chunyang Wang, Xingyu Jiang, Qi Shen, Yue Li, Dongni Shi, Ying Ouyang, Xiangfu Chen, Xiaowu Deng, Siyi Zhang, Hequn Zou, Shuwei Chen
{"title":"Metabolic expression profiling analysis reveals pyruvate-mediated EPHB2 upregulation promotes lymphatic metastasis in head and neck squamous cell carcinomas.","authors":"Jingjing Miao, Boyu Chen, Lu Zhang, Zhongming Lu, Rui Wang, Chunyang Wang, Xingyu Jiang, Qi Shen, Yue Li, Dongni Shi, Ying Ouyang, Xiangfu Chen, Xiaowu Deng, Siyi Zhang, Hequn Zou, Shuwei Chen","doi":"10.1186/s12967-025-06305-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphatic metastasis is a well-known factor for initiating distant metastasis of head and neck squamous cell carcinoma (HNSCC), which caused major death in most patients with cancer. Meanwhile, metabolic reprogramming to support metastasis is regarded as a prominent hallmark of cancers. However, how metabolic disorders drive in HNSCC remains unclear. We firstly established a new classification of HNSCC patients based on metabolism gene expression profiles from the TCGA and GEO database, and identified an enriched carbohydrate metabolism subgroup which was significantly associated with lymphatic metastasis and worse clinical outcome. Moreover, we found that highly activated pyruvate metabolism endowed tumors with EPHB2 upregulation and promoted tumor lymphangiogenesis independently of VEGF-C/VEGFR3 signaling pathway. Mechanically, high nuclear acetyl-CoA production from pyruvate metabolism promoted histone acetylation, which in turn transcriptionally upregulated EPHB2 expression and secretion in tumor cells. EPHB2 bound with EFNB1 in lymphatic endothelial cells promoted YAP/TAZ cytoplasmic retention, which alleviated YAP/TAZ-mediated prospero homeobox protein 1 (PROX1) transcriptional repression, and then triggered tumor lymphangiogenesis. Importantly, combined treatment with EFNB1-Fc and VEGFR3 inhibitor synergistic abrogated lymphangiogenesis in vitro and in vivo, suggesting that targeting EPHB2 might be a potential strategy to patients with no or slight response to VEGFR3 inhibitor. These findings uncover the mechanism by which pyruvate metabolism is linked to lymphatic metastasis of tumor and provides a promising therapeutic strategy for the prevention of HNSCC metastasis.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"316"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06305-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphatic metastasis is a well-known factor for initiating distant metastasis of head and neck squamous cell carcinoma (HNSCC), which caused major death in most patients with cancer. Meanwhile, metabolic reprogramming to support metastasis is regarded as a prominent hallmark of cancers. However, how metabolic disorders drive in HNSCC remains unclear. We firstly established a new classification of HNSCC patients based on metabolism gene expression profiles from the TCGA and GEO database, and identified an enriched carbohydrate metabolism subgroup which was significantly associated with lymphatic metastasis and worse clinical outcome. Moreover, we found that highly activated pyruvate metabolism endowed tumors with EPHB2 upregulation and promoted tumor lymphangiogenesis independently of VEGF-C/VEGFR3 signaling pathway. Mechanically, high nuclear acetyl-CoA production from pyruvate metabolism promoted histone acetylation, which in turn transcriptionally upregulated EPHB2 expression and secretion in tumor cells. EPHB2 bound with EFNB1 in lymphatic endothelial cells promoted YAP/TAZ cytoplasmic retention, which alleviated YAP/TAZ-mediated prospero homeobox protein 1 (PROX1) transcriptional repression, and then triggered tumor lymphangiogenesis. Importantly, combined treatment with EFNB1-Fc and VEGFR3 inhibitor synergistic abrogated lymphangiogenesis in vitro and in vivo, suggesting that targeting EPHB2 might be a potential strategy to patients with no or slight response to VEGFR3 inhibitor. These findings uncover the mechanism by which pyruvate metabolism is linked to lymphatic metastasis of tumor and provides a promising therapeutic strategy for the prevention of HNSCC metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信