IP6K2 mutations as a novel mechanism of resistance to oncolytic virus therapy.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zhijian Huang, Xiangqian Zhao, Zirong Jiang, Xiaoting Qiu, Xinhao Sun, Dawei Wang, Hucheng Zhang, Qi Chen, Ruirong Tan, Yangkun Shen
{"title":"IP6K2 mutations as a novel mechanism of resistance to oncolytic virus therapy.","authors":"Zhijian Huang, Xiangqian Zhao, Zirong Jiang, Xiaoting Qiu, Xinhao Sun, Dawei Wang, Hucheng Zhang, Qi Chen, Ruirong Tan, Yangkun Shen","doi":"10.1186/s12967-025-06265-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oncolytic virus therapy (OVT) represents a promising frontier in cancer treatment. Despite its efficacy in clinical trials, variability in patient response, particularly resistance development, highlights the need for tailored therapeutic strategies.</p><p><strong>Methods: </strong>The Inositol Hexakisphosphate Kinase 2 (IP6K2) gene knock out was carried by CRISPR/Cas9 system. The evaluation of biomarkers of apoptosis and relevant pathways was conducted to be assessed. Attachment assay was conducted to verify the binding ability of virus to the host cells. Cell proliferation and apoptosis was assessed. Subcutaneous xenograft model was used to evaluate IP6K2 knock out influence in vivo. cBioPortal and TCGA database were applied to analyze genomic alterations in pan-cancer.</p><p><strong>Results: </strong>IP6K2 was essential for effective Herpes Simplex Virus Type1 (HSV-1) replication and subsequent cell apoptosis, acting through the tumor Protein p53 (p53) and Cyclin-Dependent Kinase Inhibitor 1 A (p21) signaling axis. The tumor model demonstrated that tumors lacking IP6K2 exhibited resistance to HSV-1 oncolysis, resulting in diminished therapeutic outcomes. Analysis of cBioPortal and TCGA databases corroborated the potential resistance stemming from IP6K2 mutations across various cancer types, underscoring the necessity for pre-treatment IP6K2 status assessment.</p><p><strong>Conclusions: </strong>This study underscores the role of IP6K2 as potential markers of resistance, which opens avenues for precision medicine approaches in OVT.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"311"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900485/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06265-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oncolytic virus therapy (OVT) represents a promising frontier in cancer treatment. Despite its efficacy in clinical trials, variability in patient response, particularly resistance development, highlights the need for tailored therapeutic strategies.

Methods: The Inositol Hexakisphosphate Kinase 2 (IP6K2) gene knock out was carried by CRISPR/Cas9 system. The evaluation of biomarkers of apoptosis and relevant pathways was conducted to be assessed. Attachment assay was conducted to verify the binding ability of virus to the host cells. Cell proliferation and apoptosis was assessed. Subcutaneous xenograft model was used to evaluate IP6K2 knock out influence in vivo. cBioPortal and TCGA database were applied to analyze genomic alterations in pan-cancer.

Results: IP6K2 was essential for effective Herpes Simplex Virus Type1 (HSV-1) replication and subsequent cell apoptosis, acting through the tumor Protein p53 (p53) and Cyclin-Dependent Kinase Inhibitor 1 A (p21) signaling axis. The tumor model demonstrated that tumors lacking IP6K2 exhibited resistance to HSV-1 oncolysis, resulting in diminished therapeutic outcomes. Analysis of cBioPortal and TCGA databases corroborated the potential resistance stemming from IP6K2 mutations across various cancer types, underscoring the necessity for pre-treatment IP6K2 status assessment.

Conclusions: This study underscores the role of IP6K2 as potential markers of resistance, which opens avenues for precision medicine approaches in OVT.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信