Notch signaling in the tumor immune microenvironment of colorectal cancer: mechanisms and therapeutic opportunities.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jiachun Sun, Yi Chen, Ziyi Xu, Weizheng Wang, Penghui Li
{"title":"Notch signaling in the tumor immune microenvironment of colorectal cancer: mechanisms and therapeutic opportunities.","authors":"Jiachun Sun, Yi Chen, Ziyi Xu, Weizheng Wang, Penghui Li","doi":"10.1186/s12967-025-06282-z","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide, driven by a complex interplay of genetic, environmental, and immune-related factors. Among the pivotal pathways implicated in CRC tumorigenesis, the Notch signaling pathway is instrumental in governing cell fate decisions, tissue renewal, homeostasis, and immune cell development. As a highly conserved mechanism, Notch signaling not only modulates tumor cell behavior but also shapes the immune landscape within the tumor microenvironment (TME). Aberrant Notch signaling in CRC fosters immune evasion and tumor progression through its effects on the balance and functionality of immune cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Elevated Notch pathway activation correlates with advanced clinicopathological features and poorer clinical outcomes, highlighting its relevance as both a prognostic biomarker and a therapeutic target. Therapeutic approaches aimed at inhibiting the Notch pathway, such as γ-secretase inhibitors (GSIs) or monoclonal antibodies (mAbs) in combination with other therapies, have demonstrated promising efficacy in preclinical and clinical settings. This review examines the impact of Notch signaling on CRC immunity, elucidating its regulatory mechanisms within immune cells and its role in promoting tumor progression. Additionally, this review discusses therapeutic strategies targeting Notch signaling, including GSIs, mAbs, and potential combination therapies designed to overcome resistance and improve patient outcomes. By elucidating the multifaceted role of Notch within the CRC TME, this review underscores its potential as a target for innovative therapeutic strategies.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"315"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06282-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide, driven by a complex interplay of genetic, environmental, and immune-related factors. Among the pivotal pathways implicated in CRC tumorigenesis, the Notch signaling pathway is instrumental in governing cell fate decisions, tissue renewal, homeostasis, and immune cell development. As a highly conserved mechanism, Notch signaling not only modulates tumor cell behavior but also shapes the immune landscape within the tumor microenvironment (TME). Aberrant Notch signaling in CRC fosters immune evasion and tumor progression through its effects on the balance and functionality of immune cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Elevated Notch pathway activation correlates with advanced clinicopathological features and poorer clinical outcomes, highlighting its relevance as both a prognostic biomarker and a therapeutic target. Therapeutic approaches aimed at inhibiting the Notch pathway, such as γ-secretase inhibitors (GSIs) or monoclonal antibodies (mAbs) in combination with other therapies, have demonstrated promising efficacy in preclinical and clinical settings. This review examines the impact of Notch signaling on CRC immunity, elucidating its regulatory mechanisms within immune cells and its role in promoting tumor progression. Additionally, this review discusses therapeutic strategies targeting Notch signaling, including GSIs, mAbs, and potential combination therapies designed to overcome resistance and improve patient outcomes. By elucidating the multifaceted role of Notch within the CRC TME, this review underscores its potential as a target for innovative therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信