Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xinyu Ye, Xiaodong Ma, Ziyi Pan, Zhe Zhang, Hua Guo, Kamil Uğurbil, Xiaoping Wu
{"title":"Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.","authors":"Xinyu Ye, Xiaodong Ma, Ziyi Pan, Zhe Zhang, Hua Guo, Kamil Uğurbil, Xiaoping Wu","doi":"10.1002/mrm.30502","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.</p><p><strong>Methods: </strong>A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal. Our approach's denoising performances were evaluated using simulation and in vivo human data experiments. The results were compared with those obtained with existing local PCA-based methods.</p><p><strong>Results: </strong>In both simulation and human data experiments, our approach substantially enhanced image quality relative to the noisy counterpart, yielding improved performances for estimation of relevant diffusion tensor imaging metrics. It also outperformed existing local PCA-based methods in reducing noise while preserving anatomic details. It also led to improved whole-brain tractography relative to the noisy counterpart.</p><p><strong>Conclusion: </strong>The proposed denoising method has the utility for improving image quality for diffusion MRI with a few diffusion directions and is believed to benefit many applications, especially those aiming to achieve high-quality parametric mapping using only a few image volumes.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30502","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.

Methods: A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal. Our approach's denoising performances were evaluated using simulation and in vivo human data experiments. The results were compared with those obtained with existing local PCA-based methods.

Results: In both simulation and human data experiments, our approach substantially enhanced image quality relative to the noisy counterpart, yielding improved performances for estimation of relevant diffusion tensor imaging metrics. It also outperformed existing local PCA-based methods in reducing noise while preserving anatomic details. It also led to improved whole-brain tractography relative to the noisy counterpart.

Conclusion: The proposed denoising method has the utility for improving image quality for diffusion MRI with a few diffusion directions and is believed to benefit many applications, especially those aiming to achieve high-quality parametric mapping using only a few image volumes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信