{"title":"Cell-free supernatant of Clostridium leptum inhibits breast cancer cell proliferation.","authors":"Qingling Wang, Huan Zhao, Huizhe Ding, Hao Zhang, Jizhou Zhang, Liqin Li, Bing Han, Guoyin Kai","doi":"10.1093/lambio/ovaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of C. leptum (ClCFS) on breast cancer cells by MTT assay. Untargeted metabolomics analysis was employed to characterize metabolite alterations in ClCFS. Furthermore, the core targets were predicted by the protein-protein interaction network and the signaling pathways were enriched by the Kyoto Encyclopedia of Genes and Genomes analysis. Our findings demonstrated that ClCFS inhibited the proliferation of breast cancer cells and that the main metabolite of ClCFS might be acetylcarnitine. Utilizing network pharmacological analysis, we identified apoptosis-related signaling pathways as the principal mechanisms underlying ClCFS activity. Furthermore, five core targets of STAT3, IL-1β, BCL2, CASP3, and ESR1 were identified. This study elucidates the main bioactive constituent and the potential targets of ClCFS against breast cancer. It provides a new understanding of the pharmacological activity of ClCFS in breast cancer treatment.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of C. leptum (ClCFS) on breast cancer cells by MTT assay. Untargeted metabolomics analysis was employed to characterize metabolite alterations in ClCFS. Furthermore, the core targets were predicted by the protein-protein interaction network and the signaling pathways were enriched by the Kyoto Encyclopedia of Genes and Genomes analysis. Our findings demonstrated that ClCFS inhibited the proliferation of breast cancer cells and that the main metabolite of ClCFS might be acetylcarnitine. Utilizing network pharmacological analysis, we identified apoptosis-related signaling pathways as the principal mechanisms underlying ClCFS activity. Furthermore, five core targets of STAT3, IL-1β, BCL2, CASP3, and ESR1 were identified. This study elucidates the main bioactive constituent and the potential targets of ClCFS against breast cancer. It provides a new understanding of the pharmacological activity of ClCFS in breast cancer treatment.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.