Alberto J Millan, Vincent Allain, Indrani Nayak, Jeremy B Libang, Lilian M Quijada-Madrid, Janice S Arakawa-Hoyt, Gabriella Ureno, Allison Grace Rothrock, Avishai Shemesh, Oscar A Aguilar, Justin Eyquem, Jayajit Das, Lewis L Lanier
{"title":"SYK negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy.","authors":"Alberto J Millan, Vincent Allain, Indrani Nayak, Jeremy B Libang, Lilian M Quijada-Madrid, Janice S Arakawa-Hoyt, Gabriella Ureno, Allison Grace Rothrock, Avishai Shemesh, Oscar A Aguilar, Justin Eyquem, Jayajit Das, Lewis L Lanier","doi":"10.1093/jimmun/vkaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Natural killer (NK) cells express activating receptors that signal through ITAM (immunoreceptor tyrosine-based activation motif)-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca2+ influx. While all immature and mature human NK cells coexpress SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes, and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca2+ influx after crosslinking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 and mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished T cell receptor-induced Ca2+ flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting chimeric antigen receptor and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkaf012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural killer (NK) cells express activating receptors that signal through ITAM (immunoreceptor tyrosine-based activation motif)-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca2+ influx. While all immature and mature human NK cells coexpress SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes, and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca2+ influx after crosslinking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 and mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished T cell receptor-induced Ca2+ flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting chimeric antigen receptor and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
期刊介绍:
The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)