Influenza 5xM2e mRNA lipid nanoparticle vaccine confers broad immunity and significantly enhances the efficacy of inactivated split vaccination when coadministered.

IF 3.6 3区 医学 Q2 IMMUNOLOGY
Phillip Grovenstein, Noopur Bhatnagar, Ki-Hye Kim, Surya Sekhar Pal, Chau Thuy Tien Le, Jannatul Ruhan Raha, Rong Liu, Chong Hyun Shin, Bo Ryoung Park, Lanying Du, Jeeva Subbiah, Bao-Zhong Wang, Sang-Moo Kang
{"title":"Influenza 5xM2e mRNA lipid nanoparticle vaccine confers broad immunity and significantly enhances the efficacy of inactivated split vaccination when coadministered.","authors":"Phillip Grovenstein, Noopur Bhatnagar, Ki-Hye Kim, Surya Sekhar Pal, Chau Thuy Tien Le, Jannatul Ruhan Raha, Rong Liu, Chong Hyun Shin, Bo Ryoung Park, Lanying Du, Jeeva Subbiah, Bao-Zhong Wang, Sang-Moo Kang","doi":"10.1093/jimmun/vkae013","DOIUrl":null,"url":null,"abstract":"<p><p>Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells. The mice with 5xM2e mRNA vaccination were broadly protected against lethal infection regardless of hemagglutinin (H1, H3, H5) subtypes by preventing severe weight loss. Injection of 5xM2e mRNA LNP vaccine induced acute innate responses recruiting monocytes, macrophages, and diverse subsets of dendritic cells. A single dose of combined 5xM2e mRNA LNP and split vaccines resulted in significantly enhanced and sustainable IgG antibody responses to viral antigens and protection against homologous and heterologous viruses. This study provides a new strategy of combined mRNA and seasonal vaccination, significantly enhancing vaccine protective efficacy.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":"214 1","pages":"104-114"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkae013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells. The mice with 5xM2e mRNA vaccination were broadly protected against lethal infection regardless of hemagglutinin (H1, H3, H5) subtypes by preventing severe weight loss. Injection of 5xM2e mRNA LNP vaccine induced acute innate responses recruiting monocytes, macrophages, and diverse subsets of dendritic cells. A single dose of combined 5xM2e mRNA LNP and split vaccines resulted in significantly enhanced and sustainable IgG antibody responses to viral antigens and protection against homologous and heterologous viruses. This study provides a new strategy of combined mRNA and seasonal vaccination, significantly enhancing vaccine protective efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信