{"title":"Acid-responsive aggregated carrot-derived nanoantioxidants alleviate oxidative stress and restore osteoblast activity.","authors":"Jiao Peng, Rongyan Liu, Junyi Xu, Yingjuan Yao, Beibei Li, Dengke Chen, Zhuangpeng Chang, Rui Zhao, Yanlin Feng, Ruigang Hou, Min Lee, Xiao Zhang","doi":"10.1186/s12951-025-03235-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Excessive generation of reactive oxygen species is a hallmark of the osteoporotic bone microenvironment, which leads to the damage of mitochondrial function and the deactivation of osteoblasts. Fruits and vegetables are rich sources of antioxidants, which play a key role in scavenging free radicals and maintaining the body's homeostasis.</p><p><strong>Results: </strong>Herein, we have developed a type of vesicle coming from carrots as nanoantioxidants to counteract oxidative stress and restore the vitality of osteoblasts for reversing osteoporosis. Nanovesicles are derived from carrot juice using a straightforward extrusion method, resulting in stable membrane structures containing various lipids and homologous active phytochemicals. Nanovesicles can maintain stable structures under normal physiological conditions (pH 7.4) and transform into aggregates in response to the acidic extracellular pH of osteoporosis (pH 4.0). As anticipated, nanovesicles can passively target and aggregate to osteoporotic bone, ease oxidative stress, restore mitochondrial function, promote osteoblastogenesis, and reduce bone loss in osteoporotic mice.</p><p><strong>Conclusions: </strong>This work presents the first demonstration of nanovesicles derived from carrots as novel nanoantioxidants to realize the long-awaited osteogenesis, contributing to the exploration of a brand-new idea for reversing osteoporosis.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"206"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03235-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Excessive generation of reactive oxygen species is a hallmark of the osteoporotic bone microenvironment, which leads to the damage of mitochondrial function and the deactivation of osteoblasts. Fruits and vegetables are rich sources of antioxidants, which play a key role in scavenging free radicals and maintaining the body's homeostasis.
Results: Herein, we have developed a type of vesicle coming from carrots as nanoantioxidants to counteract oxidative stress and restore the vitality of osteoblasts for reversing osteoporosis. Nanovesicles are derived from carrot juice using a straightforward extrusion method, resulting in stable membrane structures containing various lipids and homologous active phytochemicals. Nanovesicles can maintain stable structures under normal physiological conditions (pH 7.4) and transform into aggregates in response to the acidic extracellular pH of osteoporosis (pH 4.0). As anticipated, nanovesicles can passively target and aggregate to osteoporotic bone, ease oxidative stress, restore mitochondrial function, promote osteoblastogenesis, and reduce bone loss in osteoporotic mice.
Conclusions: This work presents the first demonstration of nanovesicles derived from carrots as novel nanoantioxidants to realize the long-awaited osteogenesis, contributing to the exploration of a brand-new idea for reversing osteoporosis.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.