Roles of flgJ in biofilm formation of Vibrio alginolyticus.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chuancao Lin, Na Zhang, Yuanying Liang, Xiaoxiao Gong, Yanhua Zeng, Hao Long, Zhenyu Xie
{"title":"Roles of flgJ in biofilm formation of Vibrio alginolyticus.","authors":"Chuancao Lin, Na Zhang, Yuanying Liang, Xiaoxiao Gong, Yanhua Zeng, Hao Long, Zhenyu Xie","doi":"10.1093/jambio/lxaf062","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to investigate the role of two flgJ genes in flagellar assembly and biofilm regulation in Vibrio alginolyticus.</p><p><strong>Methods and results: </strong>To investigate the functions of the flgJ, overexpression and gene knockout techniques were employed. Overexpression of flgJ1 enhanced the strain's growth capacity, leading to a rapid bacterial concentration that initiated biofilm formation. Additionally, this overexpression caused different aggregation patterns at various growth stages. In contrast, the knockout of flgJ1 resulted in the loss of the flagellum, reduced motility, and decreased growth. Interestingly, under static culture conditions, the flgJ1 mutant strain aggregated and grew at the air-liquid interface, accompanied by an increased concentration of intracellular cyclic diguanosine monophosphate (c-di-GMP), which ultimately also promoted biofilm formation. Thus, both the absence and overexpression of flgJ1 led to increased biofilm formation. On the other hand, both gene knockout and overexpression of flgJ2 lacked any response under the experimental conditions.</p><p><strong>Conclusion: </strong>FlgJ1 plays a crucial role in flagellar assembly and motility, while flgJ2 has been found to be nonfunctional. Both overexpression and knockout of the flgJ1 gene result in increased biofilm formation through distinct regulatory mechanisms. These findings enhance our understanding of the role of flgJ gene in regulating biofilm formation.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to investigate the role of two flgJ genes in flagellar assembly and biofilm regulation in Vibrio alginolyticus.

Methods and results: To investigate the functions of the flgJ, overexpression and gene knockout techniques were employed. Overexpression of flgJ1 enhanced the strain's growth capacity, leading to a rapid bacterial concentration that initiated biofilm formation. Additionally, this overexpression caused different aggregation patterns at various growth stages. In contrast, the knockout of flgJ1 resulted in the loss of the flagellum, reduced motility, and decreased growth. Interestingly, under static culture conditions, the flgJ1 mutant strain aggregated and grew at the air-liquid interface, accompanied by an increased concentration of intracellular cyclic diguanosine monophosphate (c-di-GMP), which ultimately also promoted biofilm formation. Thus, both the absence and overexpression of flgJ1 led to increased biofilm formation. On the other hand, both gene knockout and overexpression of flgJ2 lacked any response under the experimental conditions.

Conclusion: FlgJ1 plays a crucial role in flagellar assembly and motility, while flgJ2 has been found to be nonfunctional. Both overexpression and knockout of the flgJ1 gene result in increased biofilm formation through distinct regulatory mechanisms. These findings enhance our understanding of the role of flgJ gene in regulating biofilm formation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信