Duraisamy Udhayakumari, Dhayanithi Duraisamy, A Nanthakumar
{"title":"PET Coordination Mechanism for the Detecting of Environmental Toxic Analytes: Current Approaches and Future Directions.","authors":"Duraisamy Udhayakumari, Dhayanithi Duraisamy, A Nanthakumar","doi":"10.1007/s10895-025-04237-7","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence-based photoinduced electron transfer (PET) has garnered significant attention in the molecular recognition field in recent years because of its unique and desirable photophysical properties. Recent advancements in PET-based chemosensors have demonstrated their potential for real-time monitoring of pollutants such as heavy metals, pesticides, and organic contaminants in various environmental matrices. This review emphasizes the recent advancements in fluorogenic and chromogenic PET-based chemosensors based on Anthracene, Imidazole, Indole, Pyrrole, Thiazole, Naphthalene, Quinoline, Calix[4]arene, Fluorescein, Quantum Dots, Schiff base compounds and also focusing on their molecular design, sensing mechanisms, and photophysical properties reported from the year 2011 to 2024.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04237-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence-based photoinduced electron transfer (PET) has garnered significant attention in the molecular recognition field in recent years because of its unique and desirable photophysical properties. Recent advancements in PET-based chemosensors have demonstrated their potential for real-time monitoring of pollutants such as heavy metals, pesticides, and organic contaminants in various environmental matrices. This review emphasizes the recent advancements in fluorogenic and chromogenic PET-based chemosensors based on Anthracene, Imidazole, Indole, Pyrrole, Thiazole, Naphthalene, Quinoline, Calix[4]arene, Fluorescein, Quantum Dots, Schiff base compounds and also focusing on their molecular design, sensing mechanisms, and photophysical properties reported from the year 2011 to 2024.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.