Transcriptome Analysis of Onobrychis viciifolia During Seed Germination Reveals GA3-Inducible Genes Associated with Phenylpropanoid and Hormone Pathways.
{"title":"Transcriptome Analysis of <i>Onobrychis viciifolia</i> During Seed Germination Reveals GA<sub>3</sub>-Inducible Genes Associated with Phenylpropanoid and Hormone Pathways.","authors":"Yanyan Luo, Kun Wang, Jiao Cheng, Lili Nan","doi":"10.3390/ijms26052335","DOIUrl":null,"url":null,"abstract":"<p><p>Sainfoin (<i>Onobrychis viciifolia</i>) is a type of leguminous plant with high feeding value. It contains a high concentration of tannins at all growth stages, which can precipitate soluble proteins and form a large number of persistent foams in the rumen, so that ruminant livestock will not develop dilatation disease during green feeding and grazing. The germination rate of <i>O. viciifolia</i> seeds is very low under natural conditions. The preliminary experiment showed that 600 mg/L GA<sub>3</sub> treatment significantly improved the germination rate and seed vitality of sainfoin seeds. In comparison to CK, GA<sub>3</sub> significantly decreased the relative content of endogenous inhibitors, with the most notable reduction observed in 4-nitroso-N-phenyl-benzenamine. Therefore, we selected the dry seed stage (GZ), imbibition stage (XZ), split stage (LK), and radicle emergence stage (MF) of four different germination stages treated with GA<sub>3</sub> for transcriptome analysis. RNA-seq identified 1392, 2534 and 4284 differentially expressed genes (DEGs) in GZ vs. XZ, XZ vs. LK, and LK vs. MF, respectively. During seed germination, DEGs are mainly enriched in hormone signaling and phenylalanine biosynthesis pathways, and up-down-regulation of these DEGs may alter hormone and secondary metabolite levels to promote germination. The results of weighted gene co-expression network construction (WGCNA) also indicate that plant hormone signal transduction and phenylpropanoid biosynthesis play a dominant role in GA<sub>3</sub>-induced seed germination. In conclusion, the combined analysis of transcriptomic and physiological indicators provided new insights into seed germination and a theoretical basis for further study of candidate genes.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26052335","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sainfoin (Onobrychis viciifolia) is a type of leguminous plant with high feeding value. It contains a high concentration of tannins at all growth stages, which can precipitate soluble proteins and form a large number of persistent foams in the rumen, so that ruminant livestock will not develop dilatation disease during green feeding and grazing. The germination rate of O. viciifolia seeds is very low under natural conditions. The preliminary experiment showed that 600 mg/L GA3 treatment significantly improved the germination rate and seed vitality of sainfoin seeds. In comparison to CK, GA3 significantly decreased the relative content of endogenous inhibitors, with the most notable reduction observed in 4-nitroso-N-phenyl-benzenamine. Therefore, we selected the dry seed stage (GZ), imbibition stage (XZ), split stage (LK), and radicle emergence stage (MF) of four different germination stages treated with GA3 for transcriptome analysis. RNA-seq identified 1392, 2534 and 4284 differentially expressed genes (DEGs) in GZ vs. XZ, XZ vs. LK, and LK vs. MF, respectively. During seed germination, DEGs are mainly enriched in hormone signaling and phenylalanine biosynthesis pathways, and up-down-regulation of these DEGs may alter hormone and secondary metabolite levels to promote germination. The results of weighted gene co-expression network construction (WGCNA) also indicate that plant hormone signal transduction and phenylpropanoid biosynthesis play a dominant role in GA3-induced seed germination. In conclusion, the combined analysis of transcriptomic and physiological indicators provided new insights into seed germination and a theoretical basis for further study of candidate genes.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).