Júlia Baixauli-Martín, Maria Consuelo Burguete, Mikahela A López-Morales, María Castelló-Ruiz, Alicia Aliena-Valero, Teresa Jover-Mengual, Dianoush Falahatgaroshibi, Germán Torregrosa, Juan B Salom
{"title":"Spatio-Temporal Characterization of Cellular Senescence Hallmarks in Experimental Ischemic Stroke.","authors":"Júlia Baixauli-Martín, Maria Consuelo Burguete, Mikahela A López-Morales, María Castelló-Ruiz, Alicia Aliena-Valero, Teresa Jover-Mengual, Dianoush Falahatgaroshibi, Germán Torregrosa, Juan B Salom","doi":"10.3390/ijms26052364","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, evidence of the existence of cellular senescence in the central nervous system has accumulated. In ischemic stroke, cellular senescence has been suggested as an unidentified pathophysiological mechanism, prompting research into the neuroprotective potential of senolytic drugs. This study aims to provide spatio-temporal evidence of the existence of brain senescence following ischemic stroke and to elucidate the involved pathways and cell types. We focused on the most established markers of senescence: cell cycle arrest (p16, p21); lysosomal activity (senescence-associated β-galactosidase [SA-β-gal]); the senescence-associated secretory phenotype ([SASP]; Interleukin-6 [IL-6], Interleukin-1β [IL-1β], Tumor necrosis factor [TNF]); and DNA/nuclear damage (Checkpoint kinase 1 [Chk1], Checkpoint kinase 2 [Chk2], Lamin B1 [LB1]). Male Wistar rats underwent 60 min of transient middle cerebral artery occlusion, followed by 24 h and 3, 7, and 14 days of recovery. Our results show significant increases in p16 expression, particularly in neurons and microglia/macrophages; SA-β-gal accumulation in the infarcted tissue; significant increases in SASP markers as early as 24 h after reperfusion; and significant changes in Chk1, Chk2, and LB1 at 14 days. Overall, our findings lend support to the existence of senescence after ischemic stroke in neurons and microglia/macrophages. However, there is still room to gain further insight into the role of senescence in the pathophysiology of ischemic stroke and in the implementation of successful senolytic therapy.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26052364","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, evidence of the existence of cellular senescence in the central nervous system has accumulated. In ischemic stroke, cellular senescence has been suggested as an unidentified pathophysiological mechanism, prompting research into the neuroprotective potential of senolytic drugs. This study aims to provide spatio-temporal evidence of the existence of brain senescence following ischemic stroke and to elucidate the involved pathways and cell types. We focused on the most established markers of senescence: cell cycle arrest (p16, p21); lysosomal activity (senescence-associated β-galactosidase [SA-β-gal]); the senescence-associated secretory phenotype ([SASP]; Interleukin-6 [IL-6], Interleukin-1β [IL-1β], Tumor necrosis factor [TNF]); and DNA/nuclear damage (Checkpoint kinase 1 [Chk1], Checkpoint kinase 2 [Chk2], Lamin B1 [LB1]). Male Wistar rats underwent 60 min of transient middle cerebral artery occlusion, followed by 24 h and 3, 7, and 14 days of recovery. Our results show significant increases in p16 expression, particularly in neurons and microglia/macrophages; SA-β-gal accumulation in the infarcted tissue; significant increases in SASP markers as early as 24 h after reperfusion; and significant changes in Chk1, Chk2, and LB1 at 14 days. Overall, our findings lend support to the existence of senescence after ischemic stroke in neurons and microglia/macrophages. However, there is still room to gain further insight into the role of senescence in the pathophysiology of ischemic stroke and in the implementation of successful senolytic therapy.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).