Resveratrol Upregulates Antioxidant Factors Expression and Downmodulates Interferon-Inducible Antiviral Factors in Aging.

IF 5.6 2区 生物学
Iara Grigoletto Fernandes, Luana de M Oliveira, Milena M de Souza Andrade, Ricardo W Alberca, Júlia Cataldo Lima, Emanuella Sarmento Alho de Sousa, Anna Julia Pietrobon, Nátalli Zanete Pereira, Anna Cláudia Calvielli Castelo Branco, Alberto José da Silva Duarte, Maria Notomi Sato
{"title":"Resveratrol Upregulates Antioxidant Factors Expression and Downmodulates Interferon-Inducible Antiviral Factors in Aging.","authors":"Iara Grigoletto Fernandes, Luana de M Oliveira, Milena M de Souza Andrade, Ricardo W Alberca, Júlia Cataldo Lima, Emanuella Sarmento Alho de Sousa, Anna Julia Pietrobon, Nátalli Zanete Pereira, Anna Cláudia Calvielli Castelo Branco, Alberto José da Silva Duarte, Maria Notomi Sato","doi":"10.3390/ijms26052345","DOIUrl":null,"url":null,"abstract":"<p><p>Immunosenescence, a process with a dysfunctional immune response that may favor infection is associated with an increase in inflammatory responses mediated by proinflammatory cytokines, characteristic of inflammaging. Aging and immunosenescence have a relationship relating to oxidative stress and inflammaging. Therefore, natural antioxidant compounds could be candidates for the control of the oxidative process. Our purpose was to evaluate the effect of resveratrol (Resv) on the antioxidant, antiviral, and anti-inflammatory responses induced by toll-like receptors (TLRs) 3, 4, and 7/8 agonists stimulation on peripheral blood mononuclear cells (PBMCs) of elderly and healthy female individuals (63-82 years old) and young and healthy female individuals (21-31 years old). Our data show that Resv may upregulate antioxidant factor expression, such as catalase (CAT) and SIRT1, in response to TLR4 and TLR7/8 agonists, similarly in both young and aged groups. Moreover, the Resv anti-inflammatory effect was detected by inhibiting IL-1β, TNF-α, and IL-10 secretion levels, as well as by the chemokines CCL2 and CCL5, induced by TLR4 and TLR7/8 stimulation. Curiously, Resv decreased antiviral genes, such as MxA, STING, and IRF7 expression, possibly by reducing the inflammatory effects of interferon-induced genes. Taken together, our results demonstrate the ability of Resv to stimulate antioxidant factors, leading to a downmodulation of the inflammatory response induced by innate immune stimulation. These findings point out Resv as a strategy to control the upregulation of inflammatory response, even in elderly individuals.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26052345","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Immunosenescence, a process with a dysfunctional immune response that may favor infection is associated with an increase in inflammatory responses mediated by proinflammatory cytokines, characteristic of inflammaging. Aging and immunosenescence have a relationship relating to oxidative stress and inflammaging. Therefore, natural antioxidant compounds could be candidates for the control of the oxidative process. Our purpose was to evaluate the effect of resveratrol (Resv) on the antioxidant, antiviral, and anti-inflammatory responses induced by toll-like receptors (TLRs) 3, 4, and 7/8 agonists stimulation on peripheral blood mononuclear cells (PBMCs) of elderly and healthy female individuals (63-82 years old) and young and healthy female individuals (21-31 years old). Our data show that Resv may upregulate antioxidant factor expression, such as catalase (CAT) and SIRT1, in response to TLR4 and TLR7/8 agonists, similarly in both young and aged groups. Moreover, the Resv anti-inflammatory effect was detected by inhibiting IL-1β, TNF-α, and IL-10 secretion levels, as well as by the chemokines CCL2 and CCL5, induced by TLR4 and TLR7/8 stimulation. Curiously, Resv decreased antiviral genes, such as MxA, STING, and IRF7 expression, possibly by reducing the inflammatory effects of interferon-induced genes. Taken together, our results demonstrate the ability of Resv to stimulate antioxidant factors, leading to a downmodulation of the inflammatory response induced by innate immune stimulation. These findings point out Resv as a strategy to control the upregulation of inflammatory response, even in elderly individuals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信