Kai Chen, Ye Yu, Hongxia Kang, Peilin Guo, Anjiang Tan
{"title":"Depletion of Gtsf1L impairs development of eupyrene sperm and ovary in Gtsf1L.","authors":"Kai Chen, Ye Yu, Hongxia Kang, Peilin Guo, Anjiang Tan","doi":"10.1111/imb.12988","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm delivers genetic information from the male to the ovum, playing vital roles in sexual reproduction. Like other Lepidoptera, Bombyx mori exhibits dimorphic spermatogenesis, generating coexisting nucleated eupyrene sperm and anucleated apyrene sperm. The mechanism of dimorphic spermatogenesis is still to be clarified. In a previous study, we demonstrated that Gametocyte-specific factor1 (Gtsf1) is essential for female sex determination and PIWI-interacting RNA (piRNA) mediated transposon silencing in B. mori. Here, we performed functional analysis of the Gtsf1 paralog BmGtsf1L using a binary transgenic CRISPR/Cas9 system. BmGtsf1L is dispensable for sex determination but critical for fertility in both males and females. We separated different types of sperm and found that BmGtsf1L is highly expressed in both types of sperm. BmGtsf1L deficiency (△BmGtsf1L) impaired the formation and migration of eupyrene sperm, whereas the development and movement of apyrene sperm were normal. Furthermore, through a sperm culture experiment, we confirmed that eupyrene spermatogenesis defects appeared before the elongation stage. Double copulations of a female with △BmGtsf1L and Sex-lethal mutant males can rescue infertility phenotypes, revealing that the apyrene sperm of BmGtsf1L mutants is functional. We also found that the depletion of BmGtsf1L impacted proper oogenesis. This study provided the first functional analysis of Gtsf1 paralogs on physiology, demonstrating the critical role of BmGtsf1L in the development of eupyrene sperm and the ovary.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12988","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sperm delivers genetic information from the male to the ovum, playing vital roles in sexual reproduction. Like other Lepidoptera, Bombyx mori exhibits dimorphic spermatogenesis, generating coexisting nucleated eupyrene sperm and anucleated apyrene sperm. The mechanism of dimorphic spermatogenesis is still to be clarified. In a previous study, we demonstrated that Gametocyte-specific factor1 (Gtsf1) is essential for female sex determination and PIWI-interacting RNA (piRNA) mediated transposon silencing in B. mori. Here, we performed functional analysis of the Gtsf1 paralog BmGtsf1L using a binary transgenic CRISPR/Cas9 system. BmGtsf1L is dispensable for sex determination but critical for fertility in both males and females. We separated different types of sperm and found that BmGtsf1L is highly expressed in both types of sperm. BmGtsf1L deficiency (△BmGtsf1L) impaired the formation and migration of eupyrene sperm, whereas the development and movement of apyrene sperm were normal. Furthermore, through a sperm culture experiment, we confirmed that eupyrene spermatogenesis defects appeared before the elongation stage. Double copulations of a female with △BmGtsf1L and Sex-lethal mutant males can rescue infertility phenotypes, revealing that the apyrene sperm of BmGtsf1L mutants is functional. We also found that the depletion of BmGtsf1L impacted proper oogenesis. This study provided the first functional analysis of Gtsf1 paralogs on physiology, demonstrating the critical role of BmGtsf1L in the development of eupyrene sperm and the ovary.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).