Mapping curvature domains in human V4 using CBV-sensitive layer-fMRI at 3T.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1537026
Elisa Zamboni, Isaac Watson, Rüdiger Stirnberg, Laurentius Huber, Elia Formisano, Rainer Goebel, Aneurin J Kennerley, Antony B Morland
{"title":"Mapping curvature domains in human V4 using CBV-sensitive layer-fMRI at 3T.","authors":"Elisa Zamboni, Isaac Watson, Rüdiger Stirnberg, Laurentius Huber, Elia Formisano, Rainer Goebel, Aneurin J Kennerley, Antony B Morland","doi":"10.3389/fnins.2025.1537026","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A full understanding of how we see our world remains a fundamental research question in vision neuroscience. While topographic profiling has allowed us to identify different visual areas, the exact functional characteristics and organization of areas up in the visual hierarchy (beyond V1 & V2) is still debated. It is hypothesized that visual area V4 represents a vital intermediate stage of processing spatial and curvature information preceding object recognition. Advancements in magnetic resonance imaging hardware and acquisition techniques (e.g., non-BOLD functional MRI) now permits the capture of cortical layer-specific functional properties and organization of the human brain (including the visual system) at high precision.</p><p><strong>Methods: </strong>Here, we use functional cerebral blood volume measures to study the modularity in how responses to contours (curvature) are organized within area V4 of the human brain. To achieve this at 3 Tesla (a clinically relevant field strength) we utilize optimized high-resolution 3D-Echo Planar Imaging (EPI) Vascular Space Occupancy (VASO) measurements.</p><p><strong>Results: </strong>Data here provide the first evidence of curvature domains in human V4 that are consistent with previous findings from non-human primates. We show that VASO and BOLD tSNR maps for functional imaging align with high field equivalents, with robust time series of changes to visual stimuli measured across the visual cortex. V4 curvature preference maps for VASO show strong modular organization compared to BOLD imaging contrast. It is noted that BOLD has a much lower sensitivity (due to known venous vasculature weightings) and specificity to stimulus contrast. We show evidence that curvature domains persist across the cortical depth. The work advances our understanding of the role of mid-level area V4 in human processing of curvature and shape features.</p><p><strong>Impact: </strong>Knowledge of how the functional architecture and hierarchical integration of local contours (curvature) contribute to formation of shapes can inform computational models of object recognition. Techniques described here allow for quantification of individual differences in functional architecture of mid-level visual areas to help drive a better understanding of how changes in functional brain organization relate to difference in visual perception.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1537026"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1537026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: A full understanding of how we see our world remains a fundamental research question in vision neuroscience. While topographic profiling has allowed us to identify different visual areas, the exact functional characteristics and organization of areas up in the visual hierarchy (beyond V1 & V2) is still debated. It is hypothesized that visual area V4 represents a vital intermediate stage of processing spatial and curvature information preceding object recognition. Advancements in magnetic resonance imaging hardware and acquisition techniques (e.g., non-BOLD functional MRI) now permits the capture of cortical layer-specific functional properties and organization of the human brain (including the visual system) at high precision.

Methods: Here, we use functional cerebral blood volume measures to study the modularity in how responses to contours (curvature) are organized within area V4 of the human brain. To achieve this at 3 Tesla (a clinically relevant field strength) we utilize optimized high-resolution 3D-Echo Planar Imaging (EPI) Vascular Space Occupancy (VASO) measurements.

Results: Data here provide the first evidence of curvature domains in human V4 that are consistent with previous findings from non-human primates. We show that VASO and BOLD tSNR maps for functional imaging align with high field equivalents, with robust time series of changes to visual stimuli measured across the visual cortex. V4 curvature preference maps for VASO show strong modular organization compared to BOLD imaging contrast. It is noted that BOLD has a much lower sensitivity (due to known venous vasculature weightings) and specificity to stimulus contrast. We show evidence that curvature domains persist across the cortical depth. The work advances our understanding of the role of mid-level area V4 in human processing of curvature and shape features.

Impact: Knowledge of how the functional architecture and hierarchical integration of local contours (curvature) contribute to formation of shapes can inform computational models of object recognition. Techniques described here allow for quantification of individual differences in functional architecture of mid-level visual areas to help drive a better understanding of how changes in functional brain organization relate to difference in visual perception.

使用cbv敏感层-功能磁共振成像在3T时映射人类V4的曲率域。
充分理解我们如何看待我们的世界仍然是视觉神经科学的一个基本研究问题。虽然地形剖面使我们能够识别不同的视觉区域,但在视觉层次(V1和V2之外)中,区域的确切功能特征和组织仍然存在争议。假设视觉区域V4代表了在物体识别之前处理空间和曲率信息的重要中间阶段。磁共振成像硬件和采集技术的进步(例如,非bold功能MRI)现在允许以高精度捕获皮层层特定的功能特性和人类大脑的组织(包括视觉系统)。方法:在这里,我们使用功能性脑血容量测量来研究人类大脑V4区域对轮廓(曲率)的反应是如何组织的模块化。为了在3特斯拉(临床相关场强)下实现这一目标,我们利用优化的高分辨率3d回声平面成像(EPI)血管空间占用(VASO)测量。结果:这里的数据提供了人类V4曲率域的第一个证据,与之前在非人类灵长类动物中的发现一致。我们表明,VASO和BOLD tSNR功能成像图与高场等效图一致,具有在视觉皮层测量的视觉刺激变化的鲁棒时间序列。与BOLD成像对比度相比,VASO的V4曲率偏好图显示出强大的模块化组织。值得注意的是,BOLD对刺激对比的敏感性(由于已知的静脉血管权重)和特异性要低得多。我们展示了曲率域在皮层深处持续存在的证据。这项工作促进了我们对中级区域V4在人类曲率和形状特征处理中的作用的理解。影响:了解局部轮廓(曲率)的功能架构和层次整合如何有助于形状的形成,可以为物体识别的计算模型提供信息。本文描述的技术允许对中级视觉区域功能结构的个体差异进行量化,以帮助更好地理解大脑功能组织的变化与视觉感知差异的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信