Investigating visual perception abilities in flight cadets: the crucial role of the lingual gyrus and precuneus.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1519870
Xi Chen, Shicong Zhang, Shipeng Dong, Qingbin Meng, Peiran Xu, Qi Chu, Donglin Huang, Cheng Luo
{"title":"Investigating visual perception abilities in flight cadets: the crucial role of the lingual gyrus and precuneus.","authors":"Xi Chen, Shicong Zhang, Shipeng Dong, Qingbin Meng, Peiran Xu, Qi Chu, Donglin Huang, Cheng Luo","doi":"10.3389/fnins.2025.1519870","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In aviation, exceptional visual perception is crucial for pilots to monitor flight instruments and respond swiftly to deviations, as well as make rapid judgments regarding environmental changes, ensuring aviation safety. However, existing research on pilots' visual perception has predominantly focused on behavioral observations, with limited exploration of the neurophysiological mechanisms involved.</p><p><strong>Methods: </strong>This study aimed to investigate the brain activity associated with the visual perception capabilities of flight cadets. Data were collected from 25 flying cadets and 24 ground students under two conditions: a resting-state functional magnetic resonance imaging session conducted in 2022 and a change-detection task. The data were analyzed using RESTplus software.</p><p><strong>Results: </strong>The analysis revealed that degree centrality values in the right precuneus and left lingual gyrus showed significantly positive correlations with task reaction time and accuracy, respectively, in the pilot group. These brain regions were found to be significantly associated with the visual perception abilities of the pilots.</p><p><strong>Discussion: </strong>The findings suggest that alterations in the left precuneus and right lingual gyrus in pilots are linked to their visual perception capabilities, which may play a crucial role in mission performance. These results provide a foundation for improving flight training programs and selecting suitable flight trainees based on neurophysiological markers of visual perception.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1519870"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1519870","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In aviation, exceptional visual perception is crucial for pilots to monitor flight instruments and respond swiftly to deviations, as well as make rapid judgments regarding environmental changes, ensuring aviation safety. However, existing research on pilots' visual perception has predominantly focused on behavioral observations, with limited exploration of the neurophysiological mechanisms involved.

Methods: This study aimed to investigate the brain activity associated with the visual perception capabilities of flight cadets. Data were collected from 25 flying cadets and 24 ground students under two conditions: a resting-state functional magnetic resonance imaging session conducted in 2022 and a change-detection task. The data were analyzed using RESTplus software.

Results: The analysis revealed that degree centrality values in the right precuneus and left lingual gyrus showed significantly positive correlations with task reaction time and accuracy, respectively, in the pilot group. These brain regions were found to be significantly associated with the visual perception abilities of the pilots.

Discussion: The findings suggest that alterations in the left precuneus and right lingual gyrus in pilots are linked to their visual perception capabilities, which may play a crucial role in mission performance. These results provide a foundation for improving flight training programs and selecting suitable flight trainees based on neurophysiological markers of visual perception.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信