{"title":"Latent dimensions of brain asymmetry.","authors":"Chenghui Zhang, Yi Pu, Xiang-Zhen Kong","doi":"10.1016/B978-0-443-15646-5.00027-0","DOIUrl":null,"url":null,"abstract":"<p><p>Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging. On the one hand, functional lateralization has long been oversimplified, often reduced to a unidimensional perspective. For instance, individuals are sometimes labeled as left-brained or right-brained based on specific behavioral measures like handedness and language lateralization. Such a perspective disregards the nuanced subtypes of lateralization, each potentially attributed to distinct factors and associated with unique functional correlates. On the other hand, traditional studies of brain structural asymmetry have typically focused on localized analyses of homologous regions in the two hemispheres. This perspective fails to capture the inherent interplay between brain regions, resulting in an overly complex depiction of structural asymmetry. Such conceptual and methodological discrepancies between studies of functional lateralization and structural asymmetry pose significant obstacles to establishing meaningful links between them. To address this gap, a shift toward uncovering the dimensional structure of brain asymmetry has been proposed. This chapter introduces the concept of latent dimensions of brain asymmetry and provides an up-to-date overview of studies regarding dimensions of functional lateralization and structural asymmetry in the human brain. By transcending the traditional analysis and employing multivariate pattern techniques, these studies offer valuable insights into our understanding of the intricate organizational principles governing the human brain's lateralized functions.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"208 ","pages":"37-45"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-15646-5.00027-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging. On the one hand, functional lateralization has long been oversimplified, often reduced to a unidimensional perspective. For instance, individuals are sometimes labeled as left-brained or right-brained based on specific behavioral measures like handedness and language lateralization. Such a perspective disregards the nuanced subtypes of lateralization, each potentially attributed to distinct factors and associated with unique functional correlates. On the other hand, traditional studies of brain structural asymmetry have typically focused on localized analyses of homologous regions in the two hemispheres. This perspective fails to capture the inherent interplay between brain regions, resulting in an overly complex depiction of structural asymmetry. Such conceptual and methodological discrepancies between studies of functional lateralization and structural asymmetry pose significant obstacles to establishing meaningful links between them. To address this gap, a shift toward uncovering the dimensional structure of brain asymmetry has been proposed. This chapter introduces the concept of latent dimensions of brain asymmetry and provides an up-to-date overview of studies regarding dimensions of functional lateralization and structural asymmetry in the human brain. By transcending the traditional analysis and employing multivariate pattern techniques, these studies offer valuable insights into our understanding of the intricate organizational principles governing the human brain's lateralized functions.
期刊介绍:
The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.