Brain laterality of numbers and calculation: Complex networks and their development.

Q2 Medicine
Carlo Semenza, Silvia Benavides-Varela, Elena Salillas
{"title":"Brain laterality of numbers and calculation: Complex networks and their development.","authors":"Carlo Semenza, Silvia Benavides-Varela, Elena Salillas","doi":"10.1016/B978-0-443-15646-5.00017-8","DOIUrl":null,"url":null,"abstract":"<p><p>This chapter reviews notions about the lateralization of numbers and calculation in the brain, including its developmental pattern. Such notions have changed dramatically in recent decades. What was once considered a function almost exclusively located in the left hemisphere has been found to be sustained by complex brain networks encompassing both hemispheres. Depending on the specific task, however, each hemisphere has its own role. Much of this progress was determined by the convergency of investigations conducted with different methods. Contrary to traditional wisdom, the right hemisphere is not involved in arithmetic just as far as generic spatial aspects are concerned. Very specific arithmetic functions like remembering the spatial templates for complex operations, or processing of zero in complex numbers, are indeed sustained in specific right-sided areas. The system used in the typical adult appears to be the result of a complex pattern of development. The numerical brain clearly evolved from less mature to more advanced brain networks because of growth and education. Children seem to be equipped with the ability to represent the number nonverbally from a very early age. The bilateral processing of number-related tasks is however a late acquisition.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"208 ","pages":"461-480"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-15646-5.00017-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter reviews notions about the lateralization of numbers and calculation in the brain, including its developmental pattern. Such notions have changed dramatically in recent decades. What was once considered a function almost exclusively located in the left hemisphere has been found to be sustained by complex brain networks encompassing both hemispheres. Depending on the specific task, however, each hemisphere has its own role. Much of this progress was determined by the convergency of investigations conducted with different methods. Contrary to traditional wisdom, the right hemisphere is not involved in arithmetic just as far as generic spatial aspects are concerned. Very specific arithmetic functions like remembering the spatial templates for complex operations, or processing of zero in complex numbers, are indeed sustained in specific right-sided areas. The system used in the typical adult appears to be the result of a complex pattern of development. The numerical brain clearly evolved from less mature to more advanced brain networks because of growth and education. Children seem to be equipped with the ability to represent the number nonverbally from a very early age. The bilateral processing of number-related tasks is however a late acquisition.

数字和计算的大脑偏侧性:复杂网络及其发展。
本章回顾了关于大脑中数字和计算的偏侧化的概念,包括其发展模式。近几十年来,这种观念发生了巨大变化。曾经被认为几乎只存在于左半球的功能被发现是由包含两个半球的复杂大脑网络维持的。然而,根据具体的任务,每个半球都有自己的作用。这一进展在很大程度上是由用不同方法进行的调查的趋同所决定的。与传统智慧相反,右半球并不参与算术,就一般空间方面而言。非常特殊的算术功能,比如记住复杂运算的空间模板,或者处理复数中的零,确实是在特定的右侧区域维持的。典型成年人使用的系统似乎是一种复杂的发展模式的结果。由于成长和教育,数字大脑显然从不太成熟的大脑网络进化到更先进的大脑网络。孩子们似乎在很小的时候就具备了用非语言表达数字的能力。然而,数字相关任务的双边处理是一种晚习得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of clinical neurology
Handbook of clinical neurology Medicine-Neurology (clinical)
CiteScore
4.10
自引率
0.00%
发文量
302
期刊介绍: The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信