Dynamics of endophytic fungi composition in paris polyphylla var. chinensis (franch.) hara seeds during storage and growth, and responses of seedlings to phytohormones.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1540651
Tong Peng, Tao Yang, Jie Sha, Jiang Zhao, Jianwu Shi
{"title":"Dynamics of endophytic fungi composition in <i>paris polyphylla var. chinensis (franch.) hara</i> seeds during storage and growth, and responses of seedlings to phytohormones.","authors":"Tong Peng, Tao Yang, Jie Sha, Jiang Zhao, Jianwu Shi","doi":"10.3389/fmicb.2025.1540651","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endophytic fungi exhibit diverse interactions with plants, from pathogenic to mutualistic symbiosis, and the community composition is regulated by phytohormones. Yet, the composition and dynamics of endophytic fungi in <i>Paris polyphylla var. chinensis (Franch.) Hara</i> (PPC) during fresh seed (FD), sand-stored seed (SSD), and seedling (SS) stages remain unclear. Similarly, the overall impact of phytohormones on the management of endophytic fungal communities is yet to be elucidated.</p><p><strong>Methods: </strong>We carried out a pot experiment to examine the effects of various stages of PPC seeds and the external addition of three phytohormones, namely, melatonin (MT), strigolactone (SL), and 24-epibrassinolide (BR) on the endophytic fungi of PPC seedlings. This was done through internal transcribed spacer (ITS) amplicon sequencing.</p><p><strong>Results: </strong>The study of the endophytic fungal microbiome in FD, SSD, and SS stages of PPC revealed an increased richness and diversity of fungi during the SS stage, with significant changes in community composition observed. We found that <i>Sordariomycetes</i> played a crucial role in this process, potentially contributing to the establishment and growth of PPC seedlings. Additionally, this study investigated the influence of phytohormones on the phenotypic and physiological characteristics of PPC and its endophytic fungal community. Our results demonstrated that MT and SL significantly increased PPC biomass by 69.32 and 15.23%, respectively, while 2 mg/L of BR hindered the growth of PPC roots. MT, SL, and BR not only induced significant changes in the composition and diversity of the endophytic fungal community in PPC but also affected biomass potentially through specific regulation of potential biomarkers. Furthermore, phytohormones were shown to indirectly modify the endophytic fungal community by altering antioxidant system in plants.</p><p><strong>Conclusion: </strong>This study provides novel insights into the dynamic changes of microbial communities in the FD, SSD, and SS stages. Furthermore, the differences among various phytohormones ultimately enhance our predictive understanding of how to directly or indirectly manipulate the plant microbiome to improve plant health.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1540651"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1540651","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Endophytic fungi exhibit diverse interactions with plants, from pathogenic to mutualistic symbiosis, and the community composition is regulated by phytohormones. Yet, the composition and dynamics of endophytic fungi in Paris polyphylla var. chinensis (Franch.) Hara (PPC) during fresh seed (FD), sand-stored seed (SSD), and seedling (SS) stages remain unclear. Similarly, the overall impact of phytohormones on the management of endophytic fungal communities is yet to be elucidated.

Methods: We carried out a pot experiment to examine the effects of various stages of PPC seeds and the external addition of three phytohormones, namely, melatonin (MT), strigolactone (SL), and 24-epibrassinolide (BR) on the endophytic fungi of PPC seedlings. This was done through internal transcribed spacer (ITS) amplicon sequencing.

Results: The study of the endophytic fungal microbiome in FD, SSD, and SS stages of PPC revealed an increased richness and diversity of fungi during the SS stage, with significant changes in community composition observed. We found that Sordariomycetes played a crucial role in this process, potentially contributing to the establishment and growth of PPC seedlings. Additionally, this study investigated the influence of phytohormones on the phenotypic and physiological characteristics of PPC and its endophytic fungal community. Our results demonstrated that MT and SL significantly increased PPC biomass by 69.32 and 15.23%, respectively, while 2 mg/L of BR hindered the growth of PPC roots. MT, SL, and BR not only induced significant changes in the composition and diversity of the endophytic fungal community in PPC but also affected biomass potentially through specific regulation of potential biomarkers. Furthermore, phytohormones were shown to indirectly modify the endophytic fungal community by altering antioxidant system in plants.

Conclusion: This study provides novel insights into the dynamic changes of microbial communities in the FD, SSD, and SS stages. Furthermore, the differences among various phytohormones ultimately enhance our predictive understanding of how to directly or indirectly manipulate the plant microbiome to improve plant health.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信