Dynamic changes in the gut microbiota of SPF Bama piglets during breast and formula feeding.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1537286
Chengcheng Zhang, Zhengjiang Liu, Huan Yu, Yuanyuan Shen, Lu Lu, Fanli Kong, Wei Sun, Xiaoyuan Wei, Long Jin, Liangpeng Ge, Bo Zeng
{"title":"Dynamic changes in the gut microbiota of SPF Bama piglets during breast and formula feeding.","authors":"Chengcheng Zhang, Zhengjiang Liu, Huan Yu, Yuanyuan Shen, Lu Lu, Fanli Kong, Wei Sun, Xiaoyuan Wei, Long Jin, Liangpeng Ge, Bo Zeng","doi":"10.3389/fmicb.2025.1537286","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota plays a crucial role in the growth performance, health status, and welfare of pigs. Breast milk is a key factor in the colonization of gut microbiota and the overall health of newborn piglets. With advancements in breeding technology, formula milk has been widely adopted as a substitute for breast milk. This study aims to investigate the effects of sow feeding (natural breastfeeding) and formula milk feeding on the gut microbiota of specific pathogen-free (SPF) Bama pigs. Using metagenomic sequencing technology, we analyzed 114 fecal samples to uncover the impacts of different feeding methods on gut microbial diversity, dominant microbial populations, metabolic functions, carbohydrate-active enzymes (CAZymes), and antibiotic resistance genes (ARGs). The results revealed significant differences in the structure and function of gut microbiota between the breast milk (BM) group and the formula milk (FM) group at day 21. The BM group exhibited higher gut microbial diversity compared to the FM group, along with more extensive metabolic functions at both the gene and species levels. Notably, the FM group demonstrated higher activity in galactose metabolism and glycan metabolism, particularly at day 21. Additionally, the FM group showed significantly higher levels of ARGs against glycopeptide antibiotics at days 21 and 28 compared to the BM group. This study also found that breastfeeding and formula feeding differentially regulate the metabolic activity of gut microbiota and the expression of related enzymes, which may have long-term effects on nutrient absorption and disease resistance in pigs. These findings provide new insights into how different feeding methods shape the gut microbiota of pigs and offer a scientific basis for optimizing feeding strategies and improving breeding efficiency.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1537286"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1537286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota plays a crucial role in the growth performance, health status, and welfare of pigs. Breast milk is a key factor in the colonization of gut microbiota and the overall health of newborn piglets. With advancements in breeding technology, formula milk has been widely adopted as a substitute for breast milk. This study aims to investigate the effects of sow feeding (natural breastfeeding) and formula milk feeding on the gut microbiota of specific pathogen-free (SPF) Bama pigs. Using metagenomic sequencing technology, we analyzed 114 fecal samples to uncover the impacts of different feeding methods on gut microbial diversity, dominant microbial populations, metabolic functions, carbohydrate-active enzymes (CAZymes), and antibiotic resistance genes (ARGs). The results revealed significant differences in the structure and function of gut microbiota between the breast milk (BM) group and the formula milk (FM) group at day 21. The BM group exhibited higher gut microbial diversity compared to the FM group, along with more extensive metabolic functions at both the gene and species levels. Notably, the FM group demonstrated higher activity in galactose metabolism and glycan metabolism, particularly at day 21. Additionally, the FM group showed significantly higher levels of ARGs against glycopeptide antibiotics at days 21 and 28 compared to the BM group. This study also found that breastfeeding and formula feeding differentially regulate the metabolic activity of gut microbiota and the expression of related enzymes, which may have long-term effects on nutrient absorption and disease resistance in pigs. These findings provide new insights into how different feeding methods shape the gut microbiota of pigs and offer a scientific basis for optimizing feeding strategies and improving breeding efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信