Moshit Yaskin Harush, Carmit Shani Levi, Uri Lesmes
{"title":"Potential of Process-Induced Modification of Potato Starch to Modulate Starch Digestibility and Levels of Resistant Starch Type III.","authors":"Moshit Yaskin Harush, Carmit Shani Levi, Uri Lesmes","doi":"10.3390/foods14050880","DOIUrl":null,"url":null,"abstract":"<p><p>Starch digestibility and the content of resistant starch (RS) play a crucial role in human health, particularly in relation to glycemic responses, insulin sensitivity, fat oxidation, and satiety. This study investigates the impact of processing methods on potato starch digestibility and RS content, focusing on two modification techniques: autoclaving and high hydrostatic pressure (HHP), followed by retrogradation at different temperatures. The research employs a comprehensive approach to characterize structural changes in starch samples using X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In turn, semi-dynamic in vitro digestion experiments based on the INFOGEST protocol were conducted to assess starch digestibility, while RS content was evaluated through enzymatic digestion of the non-RS fraction. SEM, XRD, and FTIR measurements reveal thermal processing appreciably affected starch architectures while HHP had a marginal effect. Further, the FTIR 1045/1022R ratio was found to be correlated with RS content measurements while reducing rapidly digestible starch (RDS). The findings led to the stipulation that thermal processing facilitates amylose leaching and granular disruption. In turn, retrogradation enabled the deposition of the amylose onto the disrupted structures which delineated their subsequent liability to enzymatic digestion. Conversely, HHP had minimal effects on granular architectures and amylose leaching. Overall, this research provides valuable insights for processing starch-based food products with the goal of increasing RS content, which may have significant implications for the food industry and nutritional science.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050880","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Starch digestibility and the content of resistant starch (RS) play a crucial role in human health, particularly in relation to glycemic responses, insulin sensitivity, fat oxidation, and satiety. This study investigates the impact of processing methods on potato starch digestibility and RS content, focusing on two modification techniques: autoclaving and high hydrostatic pressure (HHP), followed by retrogradation at different temperatures. The research employs a comprehensive approach to characterize structural changes in starch samples using X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In turn, semi-dynamic in vitro digestion experiments based on the INFOGEST protocol were conducted to assess starch digestibility, while RS content was evaluated through enzymatic digestion of the non-RS fraction. SEM, XRD, and FTIR measurements reveal thermal processing appreciably affected starch architectures while HHP had a marginal effect. Further, the FTIR 1045/1022R ratio was found to be correlated with RS content measurements while reducing rapidly digestible starch (RDS). The findings led to the stipulation that thermal processing facilitates amylose leaching and granular disruption. In turn, retrogradation enabled the deposition of the amylose onto the disrupted structures which delineated their subsequent liability to enzymatic digestion. Conversely, HHP had minimal effects on granular architectures and amylose leaching. Overall, this research provides valuable insights for processing starch-based food products with the goal of increasing RS content, which may have significant implications for the food industry and nutritional science.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds