Basma S Gabr, Abdelrahman R Shalabi, Mona F Said, Riham F George
{"title":"3,5-Disubstituted pyrazoline as a promising core for anticancer agents: mechanisms of action and therapeutic potentials.","authors":"Basma S Gabr, Abdelrahman R Shalabi, Mona F Said, Riham F George","doi":"10.1080/17568919.2025.2476393","DOIUrl":null,"url":null,"abstract":"<p><p>The rapidly growing interest in the literature about the anticancer activity of 3,5-disubstituted pyrazolines and their promising therapeutic potentials/pharmacological properties, supported by the number of pyrazoline derivatives currently in clinical use or clinical trials, encouraged us to review the <i>in vitro</i> antiproliferative effects and biochemical investigations of probable mechanisms of action. Nevertheless, many reported pyrazoline-bearing compounds have anticancer activity without an explored mode of action, which opens new research avenues to examine their biochemical profiles further. Therefore, 3,5-disubstituted pyrazoline is a promising core that can be used to design new derivatives with anticancer activity based on the structure-activity relationship summarized in this review to obtain higher potency and selectivity.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"725-745"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2476393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapidly growing interest in the literature about the anticancer activity of 3,5-disubstituted pyrazolines and their promising therapeutic potentials/pharmacological properties, supported by the number of pyrazoline derivatives currently in clinical use or clinical trials, encouraged us to review the in vitro antiproliferative effects and biochemical investigations of probable mechanisms of action. Nevertheless, many reported pyrazoline-bearing compounds have anticancer activity without an explored mode of action, which opens new research avenues to examine their biochemical profiles further. Therefore, 3,5-disubstituted pyrazoline is a promising core that can be used to design new derivatives with anticancer activity based on the structure-activity relationship summarized in this review to obtain higher potency and selectivity.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.