Synergistic Neuroprotection Through Epigenetic Modulation by Combined Curcumin-Enriched Turmeric Extract and L-Ascorbic Acid in Oxidative Stress-Induced SH-SY5Y Cell Damage.
Jurairat Khongrum, Nootchanat Mairuae, Tongjit Thanchomnang, Man Zhang, Gang Bai, Nut Palachai
{"title":"Synergistic Neuroprotection Through Epigenetic Modulation by Combined Curcumin-Enriched Turmeric Extract and L-Ascorbic Acid in Oxidative Stress-Induced SH-SY5Y Cell Damage.","authors":"Jurairat Khongrum, Nootchanat Mairuae, Tongjit Thanchomnang, Man Zhang, Gang Bai, Nut Palachai","doi":"10.3390/foods14050892","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic modulation plays a crucial role in neuroprotection by regulating cellular responses to stress, inflammation, and oxidative damage, particularly in neurodegenerative diseases. Recognizing the therapeutic potential of epigenetic regulators, this study investigated the synergistic neuroprotective effects of curcumin-enriched turmeric extract combined with L-ascorbic acid, focusing on its modulation of epigenetic pathways in oxidative stress-induced neuronal damage. SH-SY5Y neuronal cells were treated with the combination at 20 and 40 µg/mL, and subsequently exposed to 200 µM hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative stress. Cell viability was assessed using the MTT assay, while neuroprotective mechanisms were evaluated by analyzing the markers of epigenetic modulation, oxidative stress, inflammation, and apoptosis. The combination significantly enhanced cell viability, upregulated sirtuin-1 (SIRT1), and reduced DNA methyltransferase 1 (DNMT1) expression, indicating effective epigenetic modulation. Enhanced antioxidant defenses were observed, as evidenced by increased activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), along with decreased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, alleviating oxidative stress. Additionally, it suppressed nuclear factor kappa B (NF-κB) activity and its downstream mediator interleukin-6 (IL-6), thereby mitigating inflammation. The treatment also increased anti-apoptotic Bcl-2 expression while reducing pro-apoptotic markers, including caspase-3 and caspase-9, suggesting inhibition of the intrinsic apoptotic pathway. These findings highlight the novel neuroprotective effects of this combination, demonstrating its ability to modulate epigenetic pathways while reducing oxidative stress, suppressing inflammation, and preventing undesired apoptosis. Its multifaceted neuroprotective properties make it a promising functional ingredient in functional foods for neurodegenerative disease intervention. However, further investigations, including animal studies and clinical trials, are essential to evaluate its safety and therapeutic potential.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050892","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic modulation plays a crucial role in neuroprotection by regulating cellular responses to stress, inflammation, and oxidative damage, particularly in neurodegenerative diseases. Recognizing the therapeutic potential of epigenetic regulators, this study investigated the synergistic neuroprotective effects of curcumin-enriched turmeric extract combined with L-ascorbic acid, focusing on its modulation of epigenetic pathways in oxidative stress-induced neuronal damage. SH-SY5Y neuronal cells were treated with the combination at 20 and 40 µg/mL, and subsequently exposed to 200 µM hydrogen peroxide (H2O2) to induce oxidative stress. Cell viability was assessed using the MTT assay, while neuroprotective mechanisms were evaluated by analyzing the markers of epigenetic modulation, oxidative stress, inflammation, and apoptosis. The combination significantly enhanced cell viability, upregulated sirtuin-1 (SIRT1), and reduced DNA methyltransferase 1 (DNMT1) expression, indicating effective epigenetic modulation. Enhanced antioxidant defenses were observed, as evidenced by increased activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), along with decreased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, alleviating oxidative stress. Additionally, it suppressed nuclear factor kappa B (NF-κB) activity and its downstream mediator interleukin-6 (IL-6), thereby mitigating inflammation. The treatment also increased anti-apoptotic Bcl-2 expression while reducing pro-apoptotic markers, including caspase-3 and caspase-9, suggesting inhibition of the intrinsic apoptotic pathway. These findings highlight the novel neuroprotective effects of this combination, demonstrating its ability to modulate epigenetic pathways while reducing oxidative stress, suppressing inflammation, and preventing undesired apoptosis. Its multifaceted neuroprotective properties make it a promising functional ingredient in functional foods for neurodegenerative disease intervention. However, further investigations, including animal studies and clinical trials, are essential to evaluate its safety and therapeutic potential.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds