Beatriz Melo, João Robalo, Fernando Ramos, Ana Sanches Silva
{"title":"Peanuts (<i>Arachis hypogaea</i> L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification.","authors":"Beatriz Melo, João Robalo, Fernando Ramos, Ana Sanches Silva","doi":"10.3390/foods14050902","DOIUrl":null,"url":null,"abstract":"<p><p>Mycotoxins are secondary metabolites originating from several species of fungi that have proven to demonstrate high toxicity. In addition, potential contamination sources can promote increased human exposure to the adverse effects of these toxins. For this reason, it was necessary to develop several analytical methods that allow detection with the highest possible sensitivity for these toxic metabolites. Furthermore, since these methods involve high cost, are lengthy, and have sensitivity requirements, the development of multi-analyte detection methods is indispensable. The increasing consumption of groundnuts (legumes) as well as nuts (such as almonds, walnuts, and pistachios) and dried fruit (raisins and dried figs) has increased the risk of poisoning and the harmful effects of mycotoxins, which has encouraged studies for the creation of these methods. This review addresses the most representative methods applied to analyze and quantify mycotoxins in groundnuts (peanuts) together with decontamination techniques. The methodologies presented in this review are primarily based on analytical techniques for nuts and dried fruits. However, each of these methodologies can also be applied to peanut analysis for comparison and use. It is also relevant to highlight the importance of the development of multi-analyte methods in order to identify multiple mycotoxins using a single method, saving time, costs, and resources.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050902","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycotoxins are secondary metabolites originating from several species of fungi that have proven to demonstrate high toxicity. In addition, potential contamination sources can promote increased human exposure to the adverse effects of these toxins. For this reason, it was necessary to develop several analytical methods that allow detection with the highest possible sensitivity for these toxic metabolites. Furthermore, since these methods involve high cost, are lengthy, and have sensitivity requirements, the development of multi-analyte detection methods is indispensable. The increasing consumption of groundnuts (legumes) as well as nuts (such as almonds, walnuts, and pistachios) and dried fruit (raisins and dried figs) has increased the risk of poisoning and the harmful effects of mycotoxins, which has encouraged studies for the creation of these methods. This review addresses the most representative methods applied to analyze and quantify mycotoxins in groundnuts (peanuts) together with decontamination techniques. The methodologies presented in this review are primarily based on analytical techniques for nuts and dried fruits. However, each of these methodologies can also be applied to peanut analysis for comparison and use. It is also relevant to highlight the importance of the development of multi-analyte methods in order to identify multiple mycotoxins using a single method, saving time, costs, and resources.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds