Jun Su Kang, Seong-Rae Lee, Minju Lee, Eunha Kim, Pyung Cheon Lee
{"title":"A novel fluorescein sodium-based screening platform for the identification of sphingoid base-producing <i>Wickerhamomyces ciferrii</i> mutants.","authors":"Jun Su Kang, Seong-Rae Lee, Minju Lee, Eunha Kim, Pyung Cheon Lee","doi":"10.3389/fbioe.2025.1548051","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient identification of microbial strains capable of producing rare sphingoid bases, such as sphingosine and sphinganine, is critical for advancing microbial fermentation processes and addressing increasing industrial demands. <i>Wickerhamomyces ciferrii</i>, a non-conventional yeast, naturally overproduces tetraacetyl phytosphingosine (TAPS); however, the production of other valuable sphingoid bases, including sphingosine, sphinganine, and triacetyl sphingosine, remains a key target. In this study, we developed a novel screening method utilizing fluorescein sodium, a selective fluorescent dye that specifically reacts with non-acetylated sphingoid bases-sphinganine, sphingosine, and phytosphingosine-while exhibiting no reactivity with TAPS. A mutant library of <i>W. ciferrii</i> was generated via gamma-ray mutagenesis and screened using fluorescence-activated cell sorting (FACS). Mutants exhibiting high fluorescence intensity, indicative of non-acetylated or partially acetylated sphingoid base production, were isolated through three rounds of sorting and further validated via HPLC analysis. This approach successfully identified three mutant strains: P41C3 (sphingosine-producing), M01_5 (sphinganine-producing), and P41E7 (triacetyl sphingosine-producing). Among them, the P41C3 mutant achieved a sphingosine titer of 36.7 mg/L during shake-flask cultivation, accompanied by a significant reduction in TAPS production, indicating a redirection of metabolic flux. This study demonstrates the utility of fluorescein sodium as a selective screening dye for sphingoid base-producing strains and establishes an effective platform for the metabolic engineering of <i>W. ciferrii</i> to enhance the production of industrially significant sphingolipids.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1548051"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1548051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient identification of microbial strains capable of producing rare sphingoid bases, such as sphingosine and sphinganine, is critical for advancing microbial fermentation processes and addressing increasing industrial demands. Wickerhamomyces ciferrii, a non-conventional yeast, naturally overproduces tetraacetyl phytosphingosine (TAPS); however, the production of other valuable sphingoid bases, including sphingosine, sphinganine, and triacetyl sphingosine, remains a key target. In this study, we developed a novel screening method utilizing fluorescein sodium, a selective fluorescent dye that specifically reacts with non-acetylated sphingoid bases-sphinganine, sphingosine, and phytosphingosine-while exhibiting no reactivity with TAPS. A mutant library of W. ciferrii was generated via gamma-ray mutagenesis and screened using fluorescence-activated cell sorting (FACS). Mutants exhibiting high fluorescence intensity, indicative of non-acetylated or partially acetylated sphingoid base production, were isolated through three rounds of sorting and further validated via HPLC analysis. This approach successfully identified three mutant strains: P41C3 (sphingosine-producing), M01_5 (sphinganine-producing), and P41E7 (triacetyl sphingosine-producing). Among them, the P41C3 mutant achieved a sphingosine titer of 36.7 mg/L during shake-flask cultivation, accompanied by a significant reduction in TAPS production, indicating a redirection of metabolic flux. This study demonstrates the utility of fluorescein sodium as a selective screening dye for sphingoid base-producing strains and establishes an effective platform for the metabolic engineering of W. ciferrii to enhance the production of industrially significant sphingolipids.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.