Construction of an Efficient Engineered Strain for Chaetoglobosin A Bioresource Production from Potato Starch Industrial Waste.

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-02-28 DOI:10.3390/foods14050842
Kai Zhang, Shanshan Zhao, Zhengran Wang, Ming Cheng, Wan Wang, Qian Yang
{"title":"Construction of an Efficient Engineered Strain for Chaetoglobosin A Bioresource Production from Potato Starch Industrial Waste.","authors":"Kai Zhang, Shanshan Zhao, Zhengran Wang, Ming Cheng, Wan Wang, Qian Yang","doi":"10.3390/foods14050842","DOIUrl":null,"url":null,"abstract":"<p><p>Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing <i>CgMfs</i>, the gene encoding the MFS family's efflux pump, on chassis cells lacking <i>CgXpp1</i>, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu<sup>2+</sup> being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050842","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing CgMfs, the gene encoding the MFS family's efflux pump, on chassis cells lacking CgXpp1, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu2+ being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信