Pan Gao, Kairui Chang, Shu Wang, Yuling Zheng, Jiaojiao Yin, Xinghe Zhang, Martin J T Reaney
{"title":"Characterizing the Phenolic Compounds in Iron Walnut Oil (<i>Juglans sigillata</i> Dode) Across Chinese Regions.","authors":"Pan Gao, Kairui Chang, Shu Wang, Yuling Zheng, Jiaojiao Yin, Xinghe Zhang, Martin J T Reaney","doi":"10.3390/foods14050899","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the chemical composition and antioxidant properties of iron walnut oil (IWO) from different Chinese regions, using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the analysis of phenolic compounds. Regional variations were identified in fatty acid profiles, with elevated α-linolenic acid levels observed in samples from cooler climates (e.g., Liaoning, sample 1) that were 60% higher than in samples from warmer regions (e.g., Sichuan, sample 2). Antioxidant properties, quantified using 1,1-diphenylpicryl phenyl hydrazine (DPPH), 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS), and Ferric ion reducing antioxidant power (FRAP) assays, corresponded to both oil polyphenol content (up to 62.91 mg/kg) and γ-tocopherol concentrations (268.68-525.05 mg/kg). Nineteen phenolic acids and flavonoids were identified, including ellagic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, vanillic acid, quercetin, caffeic acid, ferulic acid, p-coumaric acid, coniferol, and pinoresinol. This comprehensive analysis underscores the nutritional and therapeutic potential of IWO, and delineates the impact of geographic and environmental factors on its quality, providing a scientific foundation for further research and development aimed at enhancing food industry standards and exploring natural product chemistry.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050899","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the chemical composition and antioxidant properties of iron walnut oil (IWO) from different Chinese regions, using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the analysis of phenolic compounds. Regional variations were identified in fatty acid profiles, with elevated α-linolenic acid levels observed in samples from cooler climates (e.g., Liaoning, sample 1) that were 60% higher than in samples from warmer regions (e.g., Sichuan, sample 2). Antioxidant properties, quantified using 1,1-diphenylpicryl phenyl hydrazine (DPPH), 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS), and Ferric ion reducing antioxidant power (FRAP) assays, corresponded to both oil polyphenol content (up to 62.91 mg/kg) and γ-tocopherol concentrations (268.68-525.05 mg/kg). Nineteen phenolic acids and flavonoids were identified, including ellagic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, vanillic acid, quercetin, caffeic acid, ferulic acid, p-coumaric acid, coniferol, and pinoresinol. This comprehensive analysis underscores the nutritional and therapeutic potential of IWO, and delineates the impact of geographic and environmental factors on its quality, providing a scientific foundation for further research and development aimed at enhancing food industry standards and exploring natural product chemistry.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds