{"title":"Advancing recombinant protein expression in Komagataella phaffii: opportunities and challenges.","authors":"Wen Lv, Menghao Cai","doi":"10.1093/femsyr/foaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability. This review highlights the key strategies used to facilitate productivity in K. phaffii, including systematic advances in genetic manipulation tools, transcriptional and translational regulation, protein folding and secretion optimization. Glycosylation engineering is also concerned as it enables humanized glycosylation profiles for the use in therapeutic proteins and functional food additivities. Omics technologies and genome-scale metabolic models provide new insights into cellular metabolism, enhancing recombinant protein expression. High-throughput screening technologies are also emphasized as crucial for constructing high-expression strains and accelerating strain optimization. With advancements in gene-editing, synthetic and systems biology tools, the K. phaffii expression platform has been significantly improved for fundamental research and industrial use. Future innovations aim to fully harness K. phaffii as a next-generation cell factory, providing efficient, scalable, and cost-effective solutions for diverse applications. It continues to hold promise as a key driver in the field of biotechnology.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability. This review highlights the key strategies used to facilitate productivity in K. phaffii, including systematic advances in genetic manipulation tools, transcriptional and translational regulation, protein folding and secretion optimization. Glycosylation engineering is also concerned as it enables humanized glycosylation profiles for the use in therapeutic proteins and functional food additivities. Omics technologies and genome-scale metabolic models provide new insights into cellular metabolism, enhancing recombinant protein expression. High-throughput screening technologies are also emphasized as crucial for constructing high-expression strains and accelerating strain optimization. With advancements in gene-editing, synthetic and systems biology tools, the K. phaffii expression platform has been significantly improved for fundamental research and industrial use. Future innovations aim to fully harness K. phaffii as a next-generation cell factory, providing efficient, scalable, and cost-effective solutions for diverse applications. It continues to hold promise as a key driver in the field of biotechnology.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.