Effects of tea polyphenols disinfectant on microbial communities and potential pathogenic bacteria in water.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Cuimin Feng, Shuaiqi Wang, Ting Wang, Tong Wei, Zexin Chen, Xueqing Jing
{"title":"Effects of tea polyphenols disinfectant on microbial communities and potential pathogenic bacteria in water.","authors":"Cuimin Feng, Shuaiqi Wang, Ting Wang, Tong Wei, Zexin Chen, Xueqing Jing","doi":"10.1080/09593330.2025.2478178","DOIUrl":null,"url":null,"abstract":"<p><p>The structural and abundance changes in water disinfected by tea polyphenols were investigated in high-abundance microbial communities (HAMC), medium-abundance microbial communities (MAMC), and low-abundance microbial communities (LAMC), also included the interactions within and between these communities. The antibacterial effect of tea polyphenols was observed at concentrations of 20-300 mg/L. If the tea polyphenols concentration is greater than or equal to 200 mg/L, it can continue to inhibit the growth of bacteria, and keep the total number of bacteria in 48 hours no more than100 CFU/ml, and this reflected the continuity of tea polyphenols disinfectant in the pipe network. The relative abundance of some chlorine-resistant bacteria such as <i>Blastomonas</i>, <i>Sphingomonas</i> and <i>Pseudomonas</i> decreased significantly after disinfection with tea polyphenols, which indicates that tea polyphenols have the advantage of removing some chlorine-resistant bacteria. Samples of HAMC, MAMC and LAMC showed similar structure. Co-occurrence network analysis within microbial communities revealed the most complex interrelationships in HAMC. Co-occurrence network analysis between microbial communities showed that HAMC and MAMC were most closely related. In the co-occurrence network, 8 key bacteria genera were identified, in which 5 key genera belonged to medium-abundance and low-abundance. Potential pathogens were identified in the study and potential pathogens were <i>Aerococcus</i> and <i>Staphylococcus</i> were pointed out after tea polyphenols disinfection as the key potential pathogen genera by co-occurrence network analysis. The co-occurrence relationship between these key potential pathogens and other potential pathogens indicates that water quality safety can be controlled by the number of key potential pathogens.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2478178","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The structural and abundance changes in water disinfected by tea polyphenols were investigated in high-abundance microbial communities (HAMC), medium-abundance microbial communities (MAMC), and low-abundance microbial communities (LAMC), also included the interactions within and between these communities. The antibacterial effect of tea polyphenols was observed at concentrations of 20-300 mg/L. If the tea polyphenols concentration is greater than or equal to 200 mg/L, it can continue to inhibit the growth of bacteria, and keep the total number of bacteria in 48 hours no more than100 CFU/ml, and this reflected the continuity of tea polyphenols disinfectant in the pipe network. The relative abundance of some chlorine-resistant bacteria such as Blastomonas, Sphingomonas and Pseudomonas decreased significantly after disinfection with tea polyphenols, which indicates that tea polyphenols have the advantage of removing some chlorine-resistant bacteria. Samples of HAMC, MAMC and LAMC showed similar structure. Co-occurrence network analysis within microbial communities revealed the most complex interrelationships in HAMC. Co-occurrence network analysis between microbial communities showed that HAMC and MAMC were most closely related. In the co-occurrence network, 8 key bacteria genera were identified, in which 5 key genera belonged to medium-abundance and low-abundance. Potential pathogens were identified in the study and potential pathogens were Aerococcus and Staphylococcus were pointed out after tea polyphenols disinfection as the key potential pathogen genera by co-occurrence network analysis. The co-occurrence relationship between these key potential pathogens and other potential pathogens indicates that water quality safety can be controlled by the number of key potential pathogens.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信