Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a darcy-forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity.
{"title":"Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a darcy-forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity.","authors":"Asfaw Tsegaye Moltot, Eshetu Haile Gorfie, Gurju Awgichew Zergaw, Hunegnaw Dessie","doi":"10.12688/f1000research.158629.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.</p><p><strong>Methods: </strong>This study will examine the combined effects of Weissenberg number, power law index, nanoparticle volume fraction, viscous dissipation, magnetic field, heat generation, nonlinear thermal radiation, temperature ratio, Joule heating, Brownian motion, thermophoresis, porous permeability, variable thermal conductivity, Eckert number, Prandtl number, Schmidt number, chemical reaction, velocity ratio, and Forchheimer number on the electrical conductivity of unsteady flow in tangent hyperbolic ternary hybrid nanofluids. The governing equations are transformed into similarity equations using appropriate transformations and solved numerically with the MATLAB BVP5C package. The results are validated against data from published articles to ensure reproducibility.</p><p><strong>Results: </strong>The findings reveal that an increase in the Weissenberg and Forchheimer numbers reduces the velocity profile, while the temperature distribution increases. The variable thermal conductivity parameter (Γ) leads to a higher temperature profile, indicating improved heat transfer. Higher nanoparticle concentrations in the nanofluids and hybrid nanofluids result in enhanced skin friction, Nusselt number, and Sherwood number. Ternary hybrid nanofluids show the most significant improvement in heat transfer and thermal conductivity.</p><p><strong>Conclusions: </strong>Ternary hybrid nanofluids significantly enhance heat and mass transfer, showing potential for applications in cooling systems, drug delivery, and polymer processing. The numerical results are consistent with previous research, confirming the reliability and reproducibility of the findings.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":"14 ","pages":"152"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.158629.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.
Methods: This study will examine the combined effects of Weissenberg number, power law index, nanoparticle volume fraction, viscous dissipation, magnetic field, heat generation, nonlinear thermal radiation, temperature ratio, Joule heating, Brownian motion, thermophoresis, porous permeability, variable thermal conductivity, Eckert number, Prandtl number, Schmidt number, chemical reaction, velocity ratio, and Forchheimer number on the electrical conductivity of unsteady flow in tangent hyperbolic ternary hybrid nanofluids. The governing equations are transformed into similarity equations using appropriate transformations and solved numerically with the MATLAB BVP5C package. The results are validated against data from published articles to ensure reproducibility.
Results: The findings reveal that an increase in the Weissenberg and Forchheimer numbers reduces the velocity profile, while the temperature distribution increases. The variable thermal conductivity parameter (Γ) leads to a higher temperature profile, indicating improved heat transfer. Higher nanoparticle concentrations in the nanofluids and hybrid nanofluids result in enhanced skin friction, Nusselt number, and Sherwood number. Ternary hybrid nanofluids show the most significant improvement in heat transfer and thermal conductivity.
Conclusions: Ternary hybrid nanofluids significantly enhance heat and mass transfer, showing potential for applications in cooling systems, drug delivery, and polymer processing. The numerical results are consistent with previous research, confirming the reliability and reproducibility of the findings.
F1000ResearchPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍:
F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.