Proanthocyanidin B2 alleviates Pg.LPS-induced RAW264.7 cellular inflammation and oxidative stress via PI3K/Akt/NFkB pathway.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-03-10 DOI:10.1007/s10616-025-00734-6
Xiaoyan Ou, Xin Chen, Zhichun Fang, Junwei Zhao
{"title":"Proanthocyanidin B2 alleviates <i>Pg.</i>LPS-induced RAW264.7 cellular inflammation and oxidative stress via PI3K/Akt/NFkB pathway.","authors":"Xiaoyan Ou, Xin Chen, Zhichun Fang, Junwei Zhao","doi":"10.1007/s10616-025-00734-6","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a multifactorial chronic inflammatory infectious disease associated with systemic diseases. Proanthocyanidin B2 (PB2), a polyphenol, has been investigated to exhibit antioxidant, anti-inflammatory and anti-cancer pharmacological properties. PB2 has shown good efficacy in treating hepatocellular carcinoma, type 2 diabetes mellitus, and ulcerative colitis. There are few studies on PB2 in treating periodontitis, and the molecular mechanism is unknown. This research focused on the effects of PB2 in Porphyromonas gingivalis-derived lipopolysaccharide (<i>Pg.</i> LPS)-stimulated RAW264.7 cells, as well as the potential mechanisms. CCK-8 assay was used to assess the cytotoxic effects of PB2. qRT-PCR assay and ELISA assay were used to evaluate the expression of inflammatory cytokines. DCFH-DA probe and other assay kits were employed to detect oxidative stress indicators. Western blot was conducted to assess important proteins of the PI3K/Akt/NFκB pathway. The results showed that PB2 downregulated the overproduction of pro-inflammatory mediators IL-1β, IL-6, and TNF-α; reduced the generation of ROS, MDA, and NO; Enhanced the activities of anti-inflammatory factor IL-10 and the total antioxidant capacity; and inhibited the activation of PI3K/Akt/NFκB pathway. In addition, the PI3K agonist 740Y-P was able to partially reverse the effects of PB2. This study indicates that PB2 exhibits significant anti-inflammatory and antioxidant effects in P. gingivalis LPS-stimulated RAW264.7 cells, primarily through the inhibition of the PI3K/Akt/NFκB signaling pathway.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"77"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00734-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a multifactorial chronic inflammatory infectious disease associated with systemic diseases. Proanthocyanidin B2 (PB2), a polyphenol, has been investigated to exhibit antioxidant, anti-inflammatory and anti-cancer pharmacological properties. PB2 has shown good efficacy in treating hepatocellular carcinoma, type 2 diabetes mellitus, and ulcerative colitis. There are few studies on PB2 in treating periodontitis, and the molecular mechanism is unknown. This research focused on the effects of PB2 in Porphyromonas gingivalis-derived lipopolysaccharide (Pg. LPS)-stimulated RAW264.7 cells, as well as the potential mechanisms. CCK-8 assay was used to assess the cytotoxic effects of PB2. qRT-PCR assay and ELISA assay were used to evaluate the expression of inflammatory cytokines. DCFH-DA probe and other assay kits were employed to detect oxidative stress indicators. Western blot was conducted to assess important proteins of the PI3K/Akt/NFκB pathway. The results showed that PB2 downregulated the overproduction of pro-inflammatory mediators IL-1β, IL-6, and TNF-α; reduced the generation of ROS, MDA, and NO; Enhanced the activities of anti-inflammatory factor IL-10 and the total antioxidant capacity; and inhibited the activation of PI3K/Akt/NFκB pathway. In addition, the PI3K agonist 740Y-P was able to partially reverse the effects of PB2. This study indicates that PB2 exhibits significant anti-inflammatory and antioxidant effects in P. gingivalis LPS-stimulated RAW264.7 cells, primarily through the inhibition of the PI3K/Akt/NFκB signaling pathway.

原花青素B2通过PI3K/Akt/NFkB通路缓解pg . lps诱导的RAW264.7细胞炎症和氧化应激。
牙周炎是一种与全身性疾病相关的多因素慢性炎症性传染病。原花青素B2 (PB2)是一种多酚,具有抗氧化、抗炎和抗癌的药理作用。PB2在治疗肝癌、2型糖尿病、溃疡性结肠炎等方面均有良好疗效。目前关于PB2治疗牙周炎的研究较少,其分子机制尚不清楚。本研究主要探讨PB2对牙龈卟啉单胞菌(Porphyromonas gingivalis-derived lipopolaccharide, Pg. LPS)刺激RAW264.7细胞的影响及其可能机制。CCK-8法评价PB2的细胞毒作用。采用qRT-PCR法和ELISA法检测炎症因子的表达。采用DCFH-DA探针等检测试剂盒检测氧化应激指标。Western blot检测PI3K/Akt/NFκB通路的重要蛋白。结果表明,PB2可下调促炎介质IL-1β、IL-6和TNF-α的过量产生;减少ROS、MDA、NO的生成;增强抗炎因子IL-10活性和总抗氧化能力;抑制PI3K/Akt/NFκB通路的激活。此外,PI3K激动剂740Y-P能够部分逆转PB2的作用。本研究表明,PB2主要通过抑制PI3K/Akt/NFκB信号通路,对牙龈卟啉卟啉脂多糖刺激的RAW264.7细胞具有显著的抗炎和抗氧化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信