Josué D Rivera-Fernández, Alfredo Hernández-Mendoza, Diego A Fabila-Bustos, José M de la Rosa-Vázquez, Macaria Hernández-Chávez, Gabriela de la Rosa-Gutierrez, Karen Roa-Tort
{"title":"A Low-Cost Optomechatronic Diffuse Optical Mammography System for 3D Image Reconstruction: Proof of Concept.","authors":"Josué D Rivera-Fernández, Alfredo Hernández-Mendoza, Diego A Fabila-Bustos, José M de la Rosa-Vázquez, Macaria Hernández-Chávez, Gabriela de la Rosa-Gutierrez, Karen Roa-Tort","doi":"10.3390/diagnostics15050584","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: The development and initial testing of an optomechatronic system for the reconstruction of three-dimensional (3D) images to identify abnormalities in breast tissue and assist in the diagnosis of breast cancer is presented. <b>Methods</b>: This system combines 3D reconstruction technology with diffuse optical mammography (DOM) to offer a detecting tool that complements and assists medical diagnosis. DOM analyzes tissue properties with light, detecting density and composition variations. Integrating 3D reconstruction enables detailed visualization for precise tumor localization and sizing, offering more information than traditional methods. This technological combination enables more accurate, earlier diagnoses and helps plan effective treatments by understanding the patient's anatomy and tumor location. <b>Results</b>: Using Chinese ink, it was possible to identify simulated abnormalities of 10, 15, and 20 mm in diameter in breast tissue phantoms from cosmetic surgery. <b>Conclusions</b>: Data can be processed using algorithms to generate three-dimensional images, providing a non-invasive and safe approach for detecting anomalies. Currently, the system is in a pilot testing phase using breast tissue phantoms, enabling the evaluation of its accuracy and functionality before application in clinical studies.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15050584","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The development and initial testing of an optomechatronic system for the reconstruction of three-dimensional (3D) images to identify abnormalities in breast tissue and assist in the diagnosis of breast cancer is presented. Methods: This system combines 3D reconstruction technology with diffuse optical mammography (DOM) to offer a detecting tool that complements and assists medical diagnosis. DOM analyzes tissue properties with light, detecting density and composition variations. Integrating 3D reconstruction enables detailed visualization for precise tumor localization and sizing, offering more information than traditional methods. This technological combination enables more accurate, earlier diagnoses and helps plan effective treatments by understanding the patient's anatomy and tumor location. Results: Using Chinese ink, it was possible to identify simulated abnormalities of 10, 15, and 20 mm in diameter in breast tissue phantoms from cosmetic surgery. Conclusions: Data can be processed using algorithms to generate three-dimensional images, providing a non-invasive and safe approach for detecting anomalies. Currently, the system is in a pilot testing phase using breast tissue phantoms, enabling the evaluation of its accuracy and functionality before application in clinical studies.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.