Noshaba Afshin, Nadia Mushtaq, Mushtaq Ahmed, Saboor Badshah, Sultan Mehmood Wazir, Farhad Badshah, Naila Sher, Jawaher Alkahtani, Sezai Ercisli, Mohamed S Elshikh, Riaz Hussain, Noor Ul Huda, Hajra Hameed
{"title":"Therapeutic Potential of Green Synthesized Polyherbal Formulated Silver Nanoparticles in Alloxan-Induced Diabetes Mellitus-An In Vivo Strategy.","authors":"Noshaba Afshin, Nadia Mushtaq, Mushtaq Ahmed, Saboor Badshah, Sultan Mehmood Wazir, Farhad Badshah, Naila Sher, Jawaher Alkahtani, Sezai Ercisli, Mohamed S Elshikh, Riaz Hussain, Noor Ul Huda, Hajra Hameed","doi":"10.1007/s12011-025-04566-5","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome prevalent worldwide. One effective treatment for DM is the medicinal use of green synthesized silver nanoparticles (AgNPs), which are eco-friendly and cost-effective. This study investigates the antidiabetic potential of greensynthesizedAgNPs derived from a polyherbal formulation (PHF). Characterization of PHF-AgNPs included UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX. Diabetes was induced in albino Wistar rats (N = 30, n = 6/group, 150-200 g, 8 weeks old) via intraperitoneal alloxan injection (150 mg). Groups are as follows: 1) untreated control, 2) diabetic control (150 mg/kg b.w. alloxan), 3) glibenclamide (0.5 mg/kg), 4) PHF-AgNPs (10 mg/kg), and 5) PHF-AgNPs (20 mg/kg). Blood glucose levels (BGL) were monitored on days 0, 7, 14, and 21. Blood samples were collected for the liver, kidney, and lipid profile analysis before euthanization. The results showed that PHF-AgNPs had an average size of 20 nm and exhibited significant reductions in BGL, with PHF-AgNPs at both 10 mg/kg and 20 mg/kg demonstrating superior effects compared to glibenclamide. Histopathological analysis revealed tissue regeneration in the liver, kidney, and pancreas, indicating healing of alloxan-induced damage. Additionally, treatment improved liver and kidney function markers, and lipid profiles, with reductions in cholesterol, triglycerides, ALT, AST, and creatinine levels compared to the diabetic control group. These findings suggest that green synthesized PHF-AgNPs effectively improved blood glucose control, body weight, and organ health, positioning them as a promising antidiabetic agent with potential for further clinical development.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04566-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome prevalent worldwide. One effective treatment for DM is the medicinal use of green synthesized silver nanoparticles (AgNPs), which are eco-friendly and cost-effective. This study investigates the antidiabetic potential of greensynthesizedAgNPs derived from a polyherbal formulation (PHF). Characterization of PHF-AgNPs included UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX. Diabetes was induced in albino Wistar rats (N = 30, n = 6/group, 150-200 g, 8 weeks old) via intraperitoneal alloxan injection (150 mg). Groups are as follows: 1) untreated control, 2) diabetic control (150 mg/kg b.w. alloxan), 3) glibenclamide (0.5 mg/kg), 4) PHF-AgNPs (10 mg/kg), and 5) PHF-AgNPs (20 mg/kg). Blood glucose levels (BGL) were monitored on days 0, 7, 14, and 21. Blood samples were collected for the liver, kidney, and lipid profile analysis before euthanization. The results showed that PHF-AgNPs had an average size of 20 nm and exhibited significant reductions in BGL, with PHF-AgNPs at both 10 mg/kg and 20 mg/kg demonstrating superior effects compared to glibenclamide. Histopathological analysis revealed tissue regeneration in the liver, kidney, and pancreas, indicating healing of alloxan-induced damage. Additionally, treatment improved liver and kidney function markers, and lipid profiles, with reductions in cholesterol, triglycerides, ALT, AST, and creatinine levels compared to the diabetic control group. These findings suggest that green synthesized PHF-AgNPs effectively improved blood glucose control, body weight, and organ health, positioning them as a promising antidiabetic agent with potential for further clinical development.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.