Deep learning-based multi-task prediction of response to neoadjuvant chemotherapy using multiscale whole slide images in breast cancer: A multicenter study.
Qin Wang, Feng Zhao, Haicheng Zhang, Tongpeng Chu, Qi Wang, Xipeng Pan, Yuqian Chen, Heng Zhou, Tiantian Zheng, Ziyin Li, Fan Lin, Haizhu Xie, Heng Ma, Lan Liu, Lina Zhang, Qin Li, Weiwei Wang, Yi Dai, Ruijun Tang, Jigang Wang, Ping Yang, Ning Mao
{"title":"Deep learning-based multi-task prediction of response to neoadjuvant chemotherapy using multiscale whole slide images in breast cancer: A multicenter study.","authors":"Qin Wang, Feng Zhao, Haicheng Zhang, Tongpeng Chu, Qi Wang, Xipeng Pan, Yuqian Chen, Heng Zhou, Tiantian Zheng, Ziyin Li, Fan Lin, Haizhu Xie, Heng Ma, Lan Liu, Lina Zhang, Qin Li, Weiwei Wang, Yi Dai, Ruijun Tang, Jigang Wang, Ping Yang, Ning Mao","doi":"10.21147/j.issn.1000-9604.2025.01.03","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Early predicting response before neoadjuvant chemotherapy (NAC) is crucial for personalized treatment plans for locally advanced breast cancer patients. We aim to develop a multi-task model using multiscale whole slide images (WSIs) features to predict the response to breast cancer NAC more finely.</p><p><strong>Methods: </strong>This work collected 1,670 whole slide images for training and validation sets, internal testing sets, external testing sets, and prospective testing sets of the weakly-supervised deep learning-based multi-task model (DLMM) in predicting treatment response and pCR to NAC. Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations, and controls the expressiveness of each representation via a gating-based attention mechanism.</p><p><strong>Results: </strong>In the retrospective analysis, DLMM exhibited excellent predictive performance for the prediction of treatment response, with area under the receiver operating characteristic curves (AUCs) of 0.869 [95% confidence interval (95% CI): 0.806-0.933] in the internal testing set and 0.841 (95% CI: 0.814-0.867) in the external testing sets. For the pCR prediction task, DLMM reached AUCs of 0.865 (95% CI: 0.763-0.964) in the internal testing and 0.821 (95% CI: 0.763-0.878) in the pooled external testing set. In the prospective testing study, DLMM also demonstrated favorable predictive performance, with AUCs of 0.829 (95% CI: 0.754-0.903) and 0.821 (95% CI: 0.692-0.949) in treatment response and pCR prediction, respectively. DLMM significantly outperformed the baseline models in all testing sets (P<0.05). Heatmaps were employed to interpret the decision-making basis of the model. Furthermore, it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.</p><p><strong>Conclusions: </strong>The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.</p>","PeriodicalId":9882,"journal":{"name":"Chinese Journal of Cancer Research","volume":"37 1","pages":"28-47"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21147/j.issn.1000-9604.2025.01.03","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Early predicting response before neoadjuvant chemotherapy (NAC) is crucial for personalized treatment plans for locally advanced breast cancer patients. We aim to develop a multi-task model using multiscale whole slide images (WSIs) features to predict the response to breast cancer NAC more finely.
Methods: This work collected 1,670 whole slide images for training and validation sets, internal testing sets, external testing sets, and prospective testing sets of the weakly-supervised deep learning-based multi-task model (DLMM) in predicting treatment response and pCR to NAC. Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations, and controls the expressiveness of each representation via a gating-based attention mechanism.
Results: In the retrospective analysis, DLMM exhibited excellent predictive performance for the prediction of treatment response, with area under the receiver operating characteristic curves (AUCs) of 0.869 [95% confidence interval (95% CI): 0.806-0.933] in the internal testing set and 0.841 (95% CI: 0.814-0.867) in the external testing sets. For the pCR prediction task, DLMM reached AUCs of 0.865 (95% CI: 0.763-0.964) in the internal testing and 0.821 (95% CI: 0.763-0.878) in the pooled external testing set. In the prospective testing study, DLMM also demonstrated favorable predictive performance, with AUCs of 0.829 (95% CI: 0.754-0.903) and 0.821 (95% CI: 0.692-0.949) in treatment response and pCR prediction, respectively. DLMM significantly outperformed the baseline models in all testing sets (P<0.05). Heatmaps were employed to interpret the decision-making basis of the model. Furthermore, it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.
Conclusions: The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.
期刊介绍:
Chinese Journal of Cancer Research (CJCR; Print ISSN: 1000-9604; Online ISSN:1993-0631) is published by AME Publishing Company in association with Chinese Anti-Cancer Association.It was launched in March 1995 as a quarterly publication and is now published bi-monthly since February 2013.
CJCR is published bi-monthly in English, and is an international journal devoted to the life sciences and medical sciences. It publishes peer-reviewed original articles of basic investigations and clinical observations, reviews and brief communications providing a forum for the recent experimental and clinical advances in cancer research. This journal is indexed in Science Citation Index Expanded (SCIE), PubMed/PubMed Central (PMC), Scopus, SciSearch, Chemistry Abstracts (CA), the Excerpta Medica/EMBASE, Chinainfo, CNKI, CSCI, etc.