CT-based radiomics-deep learning model predicts occult lymph node metastasis in early-stage lung adenocarcinoma patients: A multicenter study.

IF 7 2区 医学 Q1 ONCOLOGY
Xiaoyan Yin, Yao Lu, Yongbin Cui, Zichun Zhou, Junxu Wen, Zhaoqin Huang, Yuanyuan Yan, Jinming Yu, Xiangjiao Meng
{"title":"CT-based radiomics-deep learning model predicts occult lymph node metastasis in early-stage lung adenocarcinoma patients: A multicenter study.","authors":"Xiaoyan Yin, Yao Lu, Yongbin Cui, Zichun Zhou, Junxu Wen, Zhaoqin Huang, Yuanyuan Yan, Jinming Yu, Xiangjiao Meng","doi":"10.21147/j.issn.1000-9604.2025.01.02","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The neglect of occult lymph nodes metastasis (OLNM) is one of the pivotal causes of early non-small cell lung cancer (NSCLC) recurrence after local treatments such as stereotactic body radiotherapy (SBRT) or surgery. This study aimed to develop and validate a computed tomography (CT)-based radiomics and deep learning (DL) fusion model for predicting non-invasive OLNM.</p><p><strong>Methods: </strong>Patients with radiologically node-negative lung adenocarcinoma from two centers were retrospectively analyzed. We developed clinical, radiomics, and radiomics-clinical models using logistic regression. A DL model was established using a three-dimensional squeeze-and-excitation residual network-34 (3D SE-ResNet34) and a fusion model was created by integrating seleted clinical, radiomics features and DL features. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Five predictive models were compared; SHapley Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-CAM) were employed for visualization and interpretation.</p><p><strong>Results: </strong>Overall, 358 patients were included: 186 in the training cohort, 48 in the internal validation cohort, and 124 in the external testing cohort. The DL fusion model incorporating 3D SE-Resnet34 achieved the highest AUC of 0.947 in the training dataset, with strong performance in internal and external cohorts (AUCs of 0.903 and 0.907, respectively), outperforming single-modal DL models, clinical models, radiomics models, and radiomics-clinical combined models (DeLong test: P<0.05). DCA confirmed its clinical utility, and calibration curves demonstrated excellent agreement between predicted and observed OLNM probabilities. Features interpretation highlighted the importance of textural characteristics and the surrounding tumor regions in stratifying OLNM risk.</p><p><strong>Conclusions: </strong>The DL fusion model reliably and accurately predicts OLNM in early-stage lung adenocarcinoma, offering a non-invasive tool to refine staging and guide personalized treatment decisions. These results may aid clinicians in optimizing surgical and radiotherapy strategies.</p>","PeriodicalId":9882,"journal":{"name":"Chinese Journal of Cancer Research","volume":"37 1","pages":"12-27"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21147/j.issn.1000-9604.2025.01.02","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The neglect of occult lymph nodes metastasis (OLNM) is one of the pivotal causes of early non-small cell lung cancer (NSCLC) recurrence after local treatments such as stereotactic body radiotherapy (SBRT) or surgery. This study aimed to develop and validate a computed tomography (CT)-based radiomics and deep learning (DL) fusion model for predicting non-invasive OLNM.

Methods: Patients with radiologically node-negative lung adenocarcinoma from two centers were retrospectively analyzed. We developed clinical, radiomics, and radiomics-clinical models using logistic regression. A DL model was established using a three-dimensional squeeze-and-excitation residual network-34 (3D SE-ResNet34) and a fusion model was created by integrating seleted clinical, radiomics features and DL features. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Five predictive models were compared; SHapley Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-CAM) were employed for visualization and interpretation.

Results: Overall, 358 patients were included: 186 in the training cohort, 48 in the internal validation cohort, and 124 in the external testing cohort. The DL fusion model incorporating 3D SE-Resnet34 achieved the highest AUC of 0.947 in the training dataset, with strong performance in internal and external cohorts (AUCs of 0.903 and 0.907, respectively), outperforming single-modal DL models, clinical models, radiomics models, and radiomics-clinical combined models (DeLong test: P<0.05). DCA confirmed its clinical utility, and calibration curves demonstrated excellent agreement between predicted and observed OLNM probabilities. Features interpretation highlighted the importance of textural characteristics and the surrounding tumor regions in stratifying OLNM risk.

Conclusions: The DL fusion model reliably and accurately predicts OLNM in early-stage lung adenocarcinoma, offering a non-invasive tool to refine staging and guide personalized treatment decisions. These results may aid clinicians in optimizing surgical and radiotherapy strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
9.80%
发文量
1726
审稿时长
4.5 months
期刊介绍: Chinese Journal of Cancer Research (CJCR; Print ISSN: 1000-9604; Online ISSN:1993-0631) is published by AME Publishing Company in association with Chinese Anti-Cancer Association.It was launched in March 1995 as a quarterly publication and is now published bi-monthly since February 2013. CJCR is published bi-monthly in English, and is an international journal devoted to the life sciences and medical sciences. It publishes peer-reviewed original articles of basic investigations and clinical observations, reviews and brief communications providing a forum for the recent experimental and clinical advances in cancer research. This journal is indexed in Science Citation Index Expanded (SCIE), PubMed/PubMed Central (PMC), Scopus, SciSearch, Chemistry Abstracts (CA), the Excerpta Medica/EMBASE, Chinainfo, CNKI, CSCI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信