{"title":"The Use of Cognition by Amphibians Confronting Environmental Change: Examples from the Behavioral Ecology of Crawfish Frogs (<i>Rana areolata</i>).","authors":"Michael J Lannoo, Rochelle M Stiles","doi":"10.3390/ani15050736","DOIUrl":null,"url":null,"abstract":"<p><p>Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (<i>Rana areolata</i>) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15050736","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (Rana areolata) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).