Temporal and Spatial Dynamics of Rodent Species Habitats in the Ordos Desert Steppe, China.

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-03-03 DOI:10.3390/ani15050721
Rui Hua, Qin Su, Jinfu Fan, Liqing Wang, Linbo Xu, Yuchuang Hui, Miaomiao Huang, Bobo Du, Yanjun Tian, Yuheng Zhao, Manduriwa
{"title":"Temporal and Spatial Dynamics of Rodent Species Habitats in the Ordos Desert Steppe, China.","authors":"Rui Hua, Qin Su, Jinfu Fan, Liqing Wang, Linbo Xu, Yuchuang Hui, Miaomiao Huang, Bobo Du, Yanjun Tian, Yuheng Zhao, Manduriwa","doi":"10.3390/ani15050721","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we use the MaxEnt (maximum entropy) model to predict the distribution patterns, main influencing factors, and range changes of various small rodents in the Ordos desert steppe in China under different climate change scenarios in the future (2050s: average for 2041-2060). The results show that when the parameters are FC = LQHPT, and RM = 4, the MaxEnt model is optimal and AUC = 0.833. We found that NDVI (normalized difference vegetation index), Bio 12 (annual precipitation), and TOC (total organic carbon) are important driving factors affecting the suitability of the small rodent habitat distribution in the region. At the same time, the main influencing factors were also different for different rodent species. We selected 4 dominant species for analysis and found that, under the situation of future climate warming, the high-suitability habitat area of <i>Allactaga sibirica</i> and <i>Phodopus roborovskii</i> will decrease, while that of <i>Meriones meridianus</i> and <i>Meriones unguiculatus</i> will increase. Our research results suggest that local governments should take early preventive measures, strengthen species protection, and respond to ecological challenges brought about by climate change promptly.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15050721","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we use the MaxEnt (maximum entropy) model to predict the distribution patterns, main influencing factors, and range changes of various small rodents in the Ordos desert steppe in China under different climate change scenarios in the future (2050s: average for 2041-2060). The results show that when the parameters are FC = LQHPT, and RM = 4, the MaxEnt model is optimal and AUC = 0.833. We found that NDVI (normalized difference vegetation index), Bio 12 (annual precipitation), and TOC (total organic carbon) are important driving factors affecting the suitability of the small rodent habitat distribution in the region. At the same time, the main influencing factors were also different for different rodent species. We selected 4 dominant species for analysis and found that, under the situation of future climate warming, the high-suitability habitat area of Allactaga sibirica and Phodopus roborovskii will decrease, while that of Meriones meridianus and Meriones unguiculatus will increase. Our research results suggest that local governments should take early preventive measures, strengthen species protection, and respond to ecological challenges brought about by climate change promptly.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信