Xinfang Wang, Yu Shao, Zhi Yang, Haiming Yang, Zhiyue Wang
{"title":"Role of Vanin-1 Gene Methylation in Fat Synthesis in Goose Liver: Effects of Betaine and 5-Azacytidine Treatments.","authors":"Xinfang Wang, Yu Shao, Zhi Yang, Haiming Yang, Zhiyue Wang","doi":"10.3390/ani15050719","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the mediating effect of vanin-1 (VNN1) and its DNA methylation on the reduction in liver fat synthesis due to the role of betaine and 5-Azacytidine (5-AZA) in geese. Twenty-eight 35-day-old male Jiangnan white geese with similar body weight (BW) and good health conditions were randomized into four groups (seven birds per group). All the birds were housed with the same type of basal diet. The control group was treated with normal saline intraperitoneally (I.P.); the AZA group was treated I.P. with AZA (2 mg/kg); the betaine group was fed with betaine through the diet and treated I.P. with normal saline (1.2 g/kg); the AZA+betaine group was fed with betaine through the diet and treated I.P. with AZA. The results showed that the administration of AZA significantly increased serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and VNN1 enzyme activity (<i>p</i> < 0.05); additionally, the expression levels of the molecules in various tissues were up-regulated to different extents, such as VNN1, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA dehydrogenase (SCD), and sterol regulatory element binding protein (SREBP); in contrast, the treatment of betaine reduced serum TC levels and the S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio; furthermore, hepatic DNA methylation in the AZA group was decreased in terms of the VNN1 promoter region. The results demonstrated that the expression of the <i>VNN1</i> gene was negatively correlated with DNA methylation. This finding verified the key role of <i>VNN1</i> and its methylation in the inhibition of liver lipid synthesis by betaine and provided a novel molecular mechanism for the regulation of liver lipid metabolism.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15050719","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the mediating effect of vanin-1 (VNN1) and its DNA methylation on the reduction in liver fat synthesis due to the role of betaine and 5-Azacytidine (5-AZA) in geese. Twenty-eight 35-day-old male Jiangnan white geese with similar body weight (BW) and good health conditions were randomized into four groups (seven birds per group). All the birds were housed with the same type of basal diet. The control group was treated with normal saline intraperitoneally (I.P.); the AZA group was treated I.P. with AZA (2 mg/kg); the betaine group was fed with betaine through the diet and treated I.P. with normal saline (1.2 g/kg); the AZA+betaine group was fed with betaine through the diet and treated I.P. with AZA. The results showed that the administration of AZA significantly increased serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and VNN1 enzyme activity (p < 0.05); additionally, the expression levels of the molecules in various tissues were up-regulated to different extents, such as VNN1, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA dehydrogenase (SCD), and sterol regulatory element binding protein (SREBP); in contrast, the treatment of betaine reduced serum TC levels and the S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio; furthermore, hepatic DNA methylation in the AZA group was decreased in terms of the VNN1 promoter region. The results demonstrated that the expression of the VNN1 gene was negatively correlated with DNA methylation. This finding verified the key role of VNN1 and its methylation in the inhibition of liver lipid synthesis by betaine and provided a novel molecular mechanism for the regulation of liver lipid metabolism.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).