Nasima Akter, Thi Hiep Dao, Tamsyn M Crowley, Amy F Moss
{"title":"Optimization of Split Feeding Strategy for Laying Hens Through a Response Surface Model.","authors":"Nasima Akter, Thi Hiep Dao, Tamsyn M Crowley, Amy F Moss","doi":"10.3390/ani15050750","DOIUrl":null,"url":null,"abstract":"<p><p>Laying hens' metabolism goes through a cyclic process to produce eggs, which requires higher dietary protein and energy in the morning (AM) and higher calcium (Ca) in the afternoon/evening (PM) than the rest of the day. Therefore, poultry scientists are trying to adopt a new feeding strategy called AM/PM or split feeding to precisely meet hen's requirements more effectively than conventional methods. A 10-week cage layer trial was carried out via a Box-Behnken response surface design to identify the optimal amount of protein, energy, and calcium of the AM/PM diets. There were 13 test treatments with three levels of crude protein (19.6%/18.4%, 20.3%/17.7%, 21%/17%), calcium (3.3%/4.9%, 2.5%/5.7%, 1.6%/6.6%), and apparent metabolizable energy (AME) (12 MJ/kg/11.2 MJ/kg, 12.4 MJ/kg/10.8 MJ/kg, 12.8 MJ/kg/10.4 MJ/kg) for AM/PM diets respectively and a control treatment with industry baseline (CP-19%, Ca-4.1% and ME 11.6 MJ/kg). These are the calculated values of nutrients on a dry matter basis. A total of 364 hens were randomly distributed into 2 dietary treatments where each treatment had 13 replicates (2 hens per replicate cage, 26 hens per treatment). AM and PM diets were swapped out at approximately 8 am and 4 pm each day. Egg production and hen performance were measured daily and weekly, respectively, with egg quality, serum Ca, and nutrient digestibility measured at week 10. AM:PM intake and feed cost were calculated for each treatment. The optimal FCR, feed cost, and AM:PM intake were used to determine Ca, CP, and AME levels. The result showed that 6 out of 13 of our test treatments gave improved FCR compared to the control treatment (<i>p</i> = 0.017). Dietary treatments did not affect overall hen weight and serum Ca and egg quality at week 10, except for the lower yolk color score in the control treatment (<i>p</i> = 0.002). Hens in the experimental treatment, with calcium levels of 1.6% and 6.6%, crude protein (CP) levels of 19.6% and 18.4%, and AME content of 12.4 MJ/kg and 10.8 MJ/kg in the AM and PM diet, respectively, showed the highest apparent protein digestibility (56.6%) compared to the control group (<i>p</i> < 0.05). Similarly, hens receiving a treatment containing calcium at 3.3% and 4.9%, CP at 21% and 17%, and AME at 12.4 MJ/kg and 10.8 MJ/kg in the AM and PM diet, respectively, achieved the highest calcium digestibility (62.13%), while the control treatment yielded the lowest calcium digestibility (<i>p</i> < 0.05). After analyzing the data using the Box-Behnken response surface methodology, we found that (21/17)% CP, (3.3/4.9)% Ca, and (12/11.12) MJ/kg energy in the AM/PM diet gave the optimum performance in terms of lower feed cost and better feed efficiency. The data of AM:PM intake demonstrate that selective feeding occurs in between treatments (<i>p</i> < 0.001) and the degree of selection depends on the difference between the level of nutrients in AM and PM diet. This study revealed that when optimized, AM/PM feeding improves feed efficiency and egg quality of laying hens.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15050750","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Laying hens' metabolism goes through a cyclic process to produce eggs, which requires higher dietary protein and energy in the morning (AM) and higher calcium (Ca) in the afternoon/evening (PM) than the rest of the day. Therefore, poultry scientists are trying to adopt a new feeding strategy called AM/PM or split feeding to precisely meet hen's requirements more effectively than conventional methods. A 10-week cage layer trial was carried out via a Box-Behnken response surface design to identify the optimal amount of protein, energy, and calcium of the AM/PM diets. There were 13 test treatments with three levels of crude protein (19.6%/18.4%, 20.3%/17.7%, 21%/17%), calcium (3.3%/4.9%, 2.5%/5.7%, 1.6%/6.6%), and apparent metabolizable energy (AME) (12 MJ/kg/11.2 MJ/kg, 12.4 MJ/kg/10.8 MJ/kg, 12.8 MJ/kg/10.4 MJ/kg) for AM/PM diets respectively and a control treatment with industry baseline (CP-19%, Ca-4.1% and ME 11.6 MJ/kg). These are the calculated values of nutrients on a dry matter basis. A total of 364 hens were randomly distributed into 2 dietary treatments where each treatment had 13 replicates (2 hens per replicate cage, 26 hens per treatment). AM and PM diets were swapped out at approximately 8 am and 4 pm each day. Egg production and hen performance were measured daily and weekly, respectively, with egg quality, serum Ca, and nutrient digestibility measured at week 10. AM:PM intake and feed cost were calculated for each treatment. The optimal FCR, feed cost, and AM:PM intake were used to determine Ca, CP, and AME levels. The result showed that 6 out of 13 of our test treatments gave improved FCR compared to the control treatment (p = 0.017). Dietary treatments did not affect overall hen weight and serum Ca and egg quality at week 10, except for the lower yolk color score in the control treatment (p = 0.002). Hens in the experimental treatment, with calcium levels of 1.6% and 6.6%, crude protein (CP) levels of 19.6% and 18.4%, and AME content of 12.4 MJ/kg and 10.8 MJ/kg in the AM and PM diet, respectively, showed the highest apparent protein digestibility (56.6%) compared to the control group (p < 0.05). Similarly, hens receiving a treatment containing calcium at 3.3% and 4.9%, CP at 21% and 17%, and AME at 12.4 MJ/kg and 10.8 MJ/kg in the AM and PM diet, respectively, achieved the highest calcium digestibility (62.13%), while the control treatment yielded the lowest calcium digestibility (p < 0.05). After analyzing the data using the Box-Behnken response surface methodology, we found that (21/17)% CP, (3.3/4.9)% Ca, and (12/11.12) MJ/kg energy in the AM/PM diet gave the optimum performance in terms of lower feed cost and better feed efficiency. The data of AM:PM intake demonstrate that selective feeding occurs in between treatments (p < 0.001) and the degree of selection depends on the difference between the level of nutrients in AM and PM diet. This study revealed that when optimized, AM/PM feeding improves feed efficiency and egg quality of laying hens.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).