Mao Zhang, Yiming Yan, Guoliang Peng, Shuang Gao, Hongyi Li, Yuan Li
{"title":"Single-Cell RNA Sequencing Reveals an Atlas of Meihua Pig Testis Cells.","authors":"Mao Zhang, Yiming Yan, Guoliang Peng, Shuang Gao, Hongyi Li, Yuan Li","doi":"10.3390/ani15050752","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian spermatogenesis is a complex biological process that is regulated by multiple types of cells. The heterogeneity of these cells poses a challenge for analyzing different cell types at different developmental stages. To characterize the transcriptomic landscape of porcine spermatogenesis and identify potential marker genes for spermatogonia, an unbiased transcriptomic study of spermatogenesis in neonatal and sexually mature six-month-old Meihua pigs was performed using 10× Genomics single-cell RNA sequencing (scRNA-seq). Through the collection of scRNA-seq data from 13,839 cells from Meihua pig testes, three germ cells (spermatogonia, spermatocytes and spermatids) and eight somatic cells (Sertoli cells, Leydig cells, myoid/stromal cells, endothelial cells, T cells/macrophages and erythroblasts) were identified. Pseudo-timing analysis showed that myoid cells and stromal cells originated from common progenitors in Meihua pigs. Functional enrichment analysis revealed that the differentially expressed genes (DEGs) in testicular somatic cells were enriched in the pathways of Ribosome, Oxidative phosphorylation, Protein processing in endoplasmic reticulum, Retrograde endocannabinoid signaling, Cellular senescence and Insulin signaling. Meanwhile, in the three different germ cells, except for pathways which were the same as the first three pathways for somatic cells, DEGs were also enriched in the Spliceosome, Cell cycle, Autophagy and Mitophagy pathways. Furthermore, the candidate marker gene TKTL1 in spermatogonia was identified using immunohistochemistry and immunofluorescence. In conclusion, we collected transcription datasets and constructed single-cell developmental maps of germ cells and somatic cells during the testicular development of Meihua pigs, which provided new insights into the spermatogenesis of Meihua pigs and the development of various types of cells in their testes.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15050752","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian spermatogenesis is a complex biological process that is regulated by multiple types of cells. The heterogeneity of these cells poses a challenge for analyzing different cell types at different developmental stages. To characterize the transcriptomic landscape of porcine spermatogenesis and identify potential marker genes for spermatogonia, an unbiased transcriptomic study of spermatogenesis in neonatal and sexually mature six-month-old Meihua pigs was performed using 10× Genomics single-cell RNA sequencing (scRNA-seq). Through the collection of scRNA-seq data from 13,839 cells from Meihua pig testes, three germ cells (spermatogonia, spermatocytes and spermatids) and eight somatic cells (Sertoli cells, Leydig cells, myoid/stromal cells, endothelial cells, T cells/macrophages and erythroblasts) were identified. Pseudo-timing analysis showed that myoid cells and stromal cells originated from common progenitors in Meihua pigs. Functional enrichment analysis revealed that the differentially expressed genes (DEGs) in testicular somatic cells were enriched in the pathways of Ribosome, Oxidative phosphorylation, Protein processing in endoplasmic reticulum, Retrograde endocannabinoid signaling, Cellular senescence and Insulin signaling. Meanwhile, in the three different germ cells, except for pathways which were the same as the first three pathways for somatic cells, DEGs were also enriched in the Spliceosome, Cell cycle, Autophagy and Mitophagy pathways. Furthermore, the candidate marker gene TKTL1 in spermatogonia was identified using immunohistochemistry and immunofluorescence. In conclusion, we collected transcription datasets and constructed single-cell developmental maps of germ cells and somatic cells during the testicular development of Meihua pigs, which provided new insights into the spermatogenesis of Meihua pigs and the development of various types of cells in their testes.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).