Multiple perception contrastive learning for automated ovarian tumor classification in CT images.

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen
{"title":"Multiple perception contrastive learning for automated ovarian tumor classification in CT images.","authors":"Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen","doi":"10.1007/s00261-025-04879-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04879-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信