Hewei Zhao, Han Zhang, Tong Li, Wenzheng Yin, Mingrui Gao, Shaojia Liu
{"title":"Interface Engineering for High Strength and High Toughness Ceramic Matrix Composites.","authors":"Hewei Zhao, Han Zhang, Tong Li, Wenzheng Yin, Mingrui Gao, Shaojia Liu","doi":"10.1002/asia.202401805","DOIUrl":null,"url":null,"abstract":"<p><p>Ceramics exhibit exceptional strength, hardness, and structural stability, rendering them indispensable as aerospace, national defense, and biomedical applications. However, the presence of robust covalent or ionic bonds within the ceramic leads to its inherent poor fracture toughness. The incorporation of toughening phases into ceramics is widely recognized as an optimal toughening strategy for ceramic matrix composites (CMCs) based on chemical means, with the interplay between toughening phase and ceramic at the interface playing a crucial role in achieving superior mechanical properties. In this review, we briefly delineate the evolution of ceramic matrix composites, emphasizing that interface engineering constitutes an efficacious approach to augmenting the fracture toughness of these composites. Furthermore, we meticulously explore the structure-activity relationship between the composition and structure of the toughening phase and the mechanical attributes of CMCs. Additionally, we comprehensively summarize the impact of innovative biomimetic structures on the mechanical properties of these composites, unveiling the beneficial effects of interface regulation on energy dissipation. Ultimately, we systematically consolidate the mechanisms underpinning the influence of interface engineering on the mechanical properties of CMCs and propose solutions to existing interface challenges, paving the way for the development of next-generation CMCs that exhibit unparalleled strength and toughness.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401805"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401805","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramics exhibit exceptional strength, hardness, and structural stability, rendering them indispensable as aerospace, national defense, and biomedical applications. However, the presence of robust covalent or ionic bonds within the ceramic leads to its inherent poor fracture toughness. The incorporation of toughening phases into ceramics is widely recognized as an optimal toughening strategy for ceramic matrix composites (CMCs) based on chemical means, with the interplay between toughening phase and ceramic at the interface playing a crucial role in achieving superior mechanical properties. In this review, we briefly delineate the evolution of ceramic matrix composites, emphasizing that interface engineering constitutes an efficacious approach to augmenting the fracture toughness of these composites. Furthermore, we meticulously explore the structure-activity relationship between the composition and structure of the toughening phase and the mechanical attributes of CMCs. Additionally, we comprehensively summarize the impact of innovative biomimetic structures on the mechanical properties of these composites, unveiling the beneficial effects of interface regulation on energy dissipation. Ultimately, we systematically consolidate the mechanisms underpinning the influence of interface engineering on the mechanical properties of CMCs and propose solutions to existing interface challenges, paving the way for the development of next-generation CMCs that exhibit unparalleled strength and toughness.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).